論文の概要: Generative AI for Validating Physics Laws
- arxiv url: http://arxiv.org/abs/2503.17894v2
- Date: Tue, 25 Mar 2025 14:31:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 10:43:54.120733
- Title: Generative AI for Validating Physics Laws
- Title(参考訳): 物理法則検証のための生成AI
- Authors: Maria Nareklishvili, Nicholas Polson, Vadim Sokolov,
- Abstract要約: 我々は、物理の基本法則を実証的に検証するために、生成人工知能(AI)を提案する。
提案手法は、各恒星の仮想温度条件下での反ファクトルミノシティをシミュレートする。
ガイアDR3データを用いて、平均すると、恒星半径で温度の影響が増加し、絶対等級で減少し、理論的な予測と一致することを発見した。
- 参考スコア(独自算出の注目度): 1.392794326921159
- License:
- Abstract: We present generative artificial intelligence (AI) to empirically validate fundamental laws of physics, focusing on the Stefan-Boltzmann law linking stellar temperature and luminosity. Our approach simulates counterfactual luminosities under hypothetical temperature regimes for each individual star and iteratively refines the temperature-luminosity relationship in a deep learning architecture. We use Gaia DR3 data and find that, on average, temperature's effect on luminosity increases with stellar radius and decreases with absolute magnitude, consistent with theoretical predictions. By framing physics laws as causal problems, our method offers a novel, data-driven approach to refine theoretical understanding and inform evidence-based policy and practice.
- Abstract(参考訳): 我々は、恒星温度と光度を結びつけるステファン・ボルツマン法則に着目し、物理の基本法則を実証的に検証するために、生成人工知能(AI)を提案する。
提案手法は, 各恒星の仮想温度条件下での反ファクトルミノシティをシミュレートし, 深層学習アーキテクチャにおける温度-光度関係を反復的に洗練する。
ガイアDR3データを用いて、平均すると、恒星半径で温度の影響が増加し、絶対等級で減少し、理論的な予測と一致することを発見した。
物理法則を因果問題とすることで、理論的理解を洗練し、証拠に基づく政策と実践を通知するための、新しいデータ駆動型アプローチを提供する。
関連論文リスト
- Pioneer: Physics-informed Riemannian Graph ODE for Entropy-increasing Dynamics [61.70424540412608]
幅広いエントロピー増加動的システムに対する物理インフォームドグラフODEを提案する。
我々は、物理法則に従って、証明可能なエントロピーの非減少を報告する。
実証的な結果は、実際のデータセット上でのPioneerの優位性を示している。
論文 参考訳(メタデータ) (2025-02-05T14:54:30Z) - Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data [6.0108108767559525]
ChatGPTはここ数ヶ月で最も話題になっているコンセプトで、プロフェッショナルと一般大衆の両方を魅了している。
本稿では、銀河、クエーサー、星、ガンマ線バースト(GRBs)、ブラックホール(BHs)の観測から得られた天文学データを用いて、生成前訓練変圧器モデル(GPT)を微調整する。
我々は、LLMが科学的研究において証明された有効性を示す試験として、これを成功とみなしている。
論文 参考訳(メタデータ) (2024-04-14T20:52:19Z) - Constructing Custom Thermodynamics Using Deep Learning [10.008895786910195]
人工知能(AI)の最もエキサイティングな応用の1つは、以前に蓄積されたデータに基づいた自動科学的発見である。
ここでは、任意の散逸系のマクロ的記述を学習するための一般化オンサーガー原理に基づくプラットフォームを開発する。
本研究では, 長期ポリマー鎖の伸張特性を理論的, 実験的に検証し, その効果を実証する。
論文 参考訳(メタデータ) (2023-08-08T08:19:43Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
NPTアンサンブルにおける共存シミュレーションから自律的に学習することで融点を計算するアルゴリズムを提案する。
固液共存進化の物理モデルを統合することで、アルゴリズムの精度が向上し、最適な意思決定が可能になることを実証する。
論文 参考訳(メタデータ) (2023-06-23T07:53:09Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
本稿では,最先端生成技術アプローチの潜時学習とエンドツーエンドの変分フレームワークを組み合わせた,新しい統合アーキテクチャ,潜時変分モデルを提案する。
我々の統一的アプローチは、非最新技術ベースラインの20倍以上の真理への分布自由距離を達成する。
論文 参考訳(メタデータ) (2023-05-17T17:43:10Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
論文 参考訳(メタデータ) (2022-12-09T07:33:49Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
熱力学状態方程式を強制するためにニューラルネットワークを制約することは、物理的に一貫性のある予測をもたらす。
論文 参考訳(メタデータ) (2022-12-07T09:31:25Z) - Integration of Data and Theory for Accelerated Derivable Symbolic
Discovery [3.7521856498259627]
我々は,自然法則の原理的導出を可能にする,記号的回帰と自動定理の証明を組み合わせた方法論を開発する。
ケプラーの第3法則、アインシュタインの相対論的時間拡張、ラングミュアの吸着理論を実証する。
論理的推論と機械学習の組み合わせは、自然現象の重要な側面に関する一般的な洞察を提供する。
論文 参考訳(メタデータ) (2021-09-03T17:19:17Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
捕捉イオンを用いた最適なフォノン温度推定のための断熱法を提案する。
フォノンの熱分布に関する関連する情報は、スピンの集合的な自由度に伝達することができる。
それぞれの熱状態確率は、各スピン励起構成に近似的にマッピングされることを示す。
論文 参考訳(メタデータ) (2020-12-16T12:58:08Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
推論は変数の関係を理解し、物理的に解釈可能なモデルを導出することを意味する。
機械学習モデルだけでも優れた近似器であるが、物理学の最も基本的な法則を尊重しないことが多い。
これは、地球系の知識を発見できるアルゴリズムを開発し、適用するための、長期的なAIの集合的なアジェンダである。
論文 参考訳(メタデータ) (2020-10-18T16:58:20Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
固有状態熱化仮説(ETH)は、閉量子多体系の平衡へのアプローチの普遍的なメカニズムを提供する。
本稿では, ゆらぎ・散逸関係の出現を観測し, 量子シミュレータのフルETHを探索する理論に依存しない経路を提案する。
我々の研究は、量子シミュレータにおける熱化を特徴づける理論に依存しない方法を示し、凝縮物質ポンプ-プローブ実験をシミュレーションする方法を舗装する。
論文 参考訳(メタデータ) (2020-07-20T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。