PathoHR: Breast Cancer Survival Prediction on High-Resolution Pathological Images
- URL: http://arxiv.org/abs/2503.17970v1
- Date: Sun, 23 Mar 2025 07:37:24 GMT
- Title: PathoHR: Breast Cancer Survival Prediction on High-Resolution Pathological Images
- Authors: Yang Luo, Shiru Wang, Jun Liu, Jiaxuan Xiao, Rundong Xue, Zeyu Zhang, Hao Zhang, Yu Lu, Yang Zhao, Yutong Xie,
- Abstract summary: We present PathoHR, a novel pipeline for accurate breast cancer survival prediction.<n>Our approach entails the incorporation of a plug-and-play high-resolution Vision Transformer (ViT) to enhance patch-wise WSI representation.
- Score: 25.80544600229013
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Breast cancer survival prediction in computational pathology presents a remarkable challenge due to tumor heterogeneity. For instance, different regions of the same tumor in the pathology image can show distinct morphological and molecular characteristics. This makes it difficult to extract representative features from whole slide images (WSIs) that truly reflect the tumor's aggressive potential and likely survival outcomes. In this paper, we present PathoHR, a novel pipeline for accurate breast cancer survival prediction that enhances any size of pathological images to enable more effective feature learning. Our approach entails (1) the incorporation of a plug-and-play high-resolution Vision Transformer (ViT) to enhance patch-wise WSI representation, enabling more detailed and comprehensive feature extraction, (2) the systematic evaluation of multiple advanced similarity metrics for comparing WSI-extracted features, optimizing the representation learning process to better capture tumor characteristics, (3) the demonstration that smaller image patches enhanced follow the proposed pipeline can achieve equivalent or superior prediction accuracy compared to raw larger patches, while significantly reducing computational overhead. Experimental findings valid that PathoHR provides the potential way of integrating enhanced image resolution with optimized feature learning to advance computational pathology, offering a promising direction for more accurate and efficient breast cancer survival prediction. Code will be available at https://github.com/AIGeeksGroup/PathoHR.
Related papers
- Deep learning for automated detection of breast cancer in deep ultraviolet fluorescence images with diffusion probabilistic model [6.658963545934998]
diffusion probabilistic model (DPM) has shown potential to generate high-quality images.
In this paper, we apply DPM to augment the deep ultraviolet fluorescence (DUV) image dataset with an aim to improve breast cancer classification.
arXiv Detail & Related papers (2024-07-01T05:00:26Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Leveraging Medical Foundation Model Features in Graph Neural Network-Based Retrieval of Breast Histopathology Images [1.48419209885019]
We propose a novel attention-based adversarially regularized variational graph autoencoder model for breast histological image retrieval.<n>Our top-performing model, trained with UNI features, achieved average mAP/mMV scores of 96.7%/91.5% and 97.6%/94.2% for the BreakHis and BACH datasets, respectively.
arXiv Detail & Related papers (2024-05-07T11:24:37Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
arXiv Detail & Related papers (2020-09-27T16:42:59Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
We propose a two-stage framework for WSI representation learning.
We sample relevant patches using a color-based method and use graph neural networks to learn relations among sampled patches to aggregate the image information into a single vector representation.
We demonstrate the performance of our approach for discriminating two sub-types of lung cancers, Lung Adenocarcinoma (LUAD) & Lung Squamous Cell Carcinoma (LUSC)
arXiv Detail & Related papers (2020-04-16T00:09:20Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.