論文の概要: SymmCompletion: High-Fidelity and High-Consistency Point Cloud Completion with Symmetry Guidance
- arxiv url: http://arxiv.org/abs/2503.18007v1
- Date: Sun, 23 Mar 2025 09:45:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:37.795140
- Title: SymmCompletion: High-Fidelity and High-Consistency Point Cloud Completion with Symmetry Guidance
- Title(参考訳): SymmCompletion:Symmetry Guidanceによる高忠実で高一貫性のポイントクラウドコンプリート
- Authors: Hongyu Yan, Zijun Li, Kunming Luo, Li Lu, Ping Tan,
- Abstract要約: 対称性誘導に基づく高能率補完手法であるSymCompletionを導入する。
提案手法は,局所対称性変換ネットワーク (LSTNet) とSGFormer (Symmetry-Guidance Transformer) の2成分からなる。
- 参考スコア(独自算出の注目度): 35.92382553956322
- License:
- Abstract: Point cloud completion aims to recover a complete point shape from a partial point cloud. Although existing methods can form satisfactory point clouds in global completeness, they often lose the original geometry details and face the problem of geometric inconsistency between existing point clouds and reconstructed missing parts. To tackle this problem, we introduce SymmCompletion, a highly effective completion method based on symmetry guidance. Our method comprises two primary components: a Local Symmetry Transformation Network (LSTNet) and a Symmetry-Guidance Transformer (SGFormer). First, LSTNet efficiently estimates point-wise local symmetry transformation to transform key geometries of partial inputs into missing regions, thereby generating geometry-align partial-missing pairs and initial point clouds. Second, SGFormer leverages the geometric features of partial-missing pairs as the explicit symmetric guidance that can constrain the refinement process for initial point clouds. As a result, SGFormer can exploit provided priors to form high-fidelity and geometry-consistency final point clouds. Qualitative and quantitative evaluations on several benchmark datasets demonstrate that our method outperforms state-of-the-art completion networks.
- Abstract(参考訳): ポイントクラウド補完は、部分的なポイントクラウドから完全なポイント形状を回復することを目的としている。
既存の手法は、大域的な完全性で満足な点雲を形成することができるが、元の幾何学的詳細をなくし、既存の点雲と再構成された欠落部分の間の幾何学的不整合の問題に直面することが多い。
この問題に対処するために,対称性誘導に基づく高度に効率的な補完手法であるSymCompletionを導入する。
本手法は,LSTNet(Local Symmetry Transformation Network)とSGFormer(Symmetry-Guidance Transformer)の2成分からなる。
第一に、LSTNetは、ポイントワイドな局所対称性変換を効率的に推定し、部分入力の鍵ジオメトリを欠落した領域に変換し、幾何学的な部分欠点対と初期点雲を生成する。
第二に、SGFormerは部分欠点対の幾何学的特徴を、初期点雲の精製過程を制限できる明示対称ガイダンスとして利用している。
結果として、SGFormerは提供済みの事前を利用して、高忠実で幾何整合性の最終点雲を形成することができる。
いくつかのベンチマークデータセットの定性的および定量的評価により,本手法が最先端のコンプリートネットワークより優れていることを示す。
関連論文リスト
- Fully-Geometric Cross-Attention for Point Cloud Registration [51.865371511201765]
ポイントクラウド登録のアプローチは、ノイズのあるポイント対応のため、ポイントクラウド間の重なりが低いときに失敗することが多い。
この問題に対処するTransformerベースのアーキテクチャに適した,新たなクロスアテンション機構を導入する。
我々はGromov-Wasserstein距離をクロスアテンションの定式化に統合し、異なる点雲間の点間距離を共同計算する。
点レベルでは,局所的な幾何学的構造情報を細かなマッチングのための点特徴に集約する自己認識機構も考案する。
論文 参考訳(メタデータ) (2025-02-12T10:44:36Z) - Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation [15.881442863961531]
領域間の点雲表現の幾何学的不変性を誘導する新しいスキームを提案する。
一方、点雲のセントロイドシフトを軽減するために、拡張サンプルの距離の変換を予測するための新しいプレテキストタスクが提案されている。
一方,我々は幾何学的に拡張された点雲上での自己教師付き関係学習の統合を開拓した。
論文 参考訳(メタデータ) (2024-09-11T02:39:19Z) - Partial Symmetry Detection for 3D Geometry using Contrastive Learning
with Geodesic Point Cloud Patches [10.48309709793733]
我々は,測地線点雲パッチの回転,反射,翻訳,スケール不変な局所形状の特徴を学習することを提案する。
この曖昧な問題に対して,本手法は複数の有効な解を抽出可能であることを示す。
検出された対称性を領域成長アルゴリズムと組み合わせて下流タスクを実証する。
論文 参考訳(メタデータ) (2023-12-13T15:48:50Z) - Multi-scale Geometry-aware Transformer for 3D Point Cloud Classification [17.836838702265332]
本稿では,その変種であるMulti-scale Geometry-Aware Transformer (MGT)を用いた自己注意型プラグインモジュールを提案する。
MGTは、以下の3つの側面において、マルチスケールの局所的および大域的幾何学的情報をポイントクラウドデータとして処理する。
実験の結果,MGTは自己認識機構を用いてマルチスケール幾何を捕捉する能力を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-04-12T08:34:56Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
客観的クラウド品質評価(PCQA)研究の目標は、ポイントクラウド品質を一貫した方法で測定するメトリクスを開発することである。
歪んだ点雲を基準に戻す複雑さを計測することで点雲の質を評価する。
提案手法の有効性を,5つのパブリッククラウド品質評価データベース上で行った広範囲な実験を通じて評価した。
論文 参考訳(メタデータ) (2022-10-10T13:20:51Z) - Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object
Point Clouds [36.49322708074682]
本稿では,オブジェクトポイントクラウド分類の教師なし領域適応のためのジオメトリ・アウェア・セルフトレーニング(GAST)を提案する。
具体的には,2つの自己監督型幾何学的学習タスクを特徴正規化として,意味カテゴリーのドメイン共有表現を学習することを目的とする。
一方、データセット間の多様な点分布は、新しい曲率認識歪みの局所化によって正規化することができる。
論文 参考訳(メタデータ) (2021-08-20T13:29:11Z) - Skeleton-bridged Point Completion: From Global Inference to Local
Adjustment [48.2757171993437]
形状整形のための骨格ブリッジ型点完備ネットワーク(SK-PCN)を提案する。
部分スキャンにより,まずその3次元骨格を予測し,大域構造を求める。
形状の完備化を構造推定と表面再構成に分離し,学習の難易度を緩和する。
論文 参考訳(メタデータ) (2020-10-14T22:49:30Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - Point Cloud Completion by Learning Shape Priors [74.80746431691938]
形状の先行には、完全点雲と部分点雲の両方の幾何学的情報が含まれる。
完全点から先行する形状を学習するための特徴アライメント戦略を設計し、微細な段階で部分的な事前を組み込むための粗い微妙な戦略を設計する。
我々はポイントクラウド完了タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-08-02T04:00:32Z) - Point2Mesh: A Self-Prior for Deformable Meshes [83.31236364265403]
本稿では,入力点雲から表面メッシュを再構築する技術であるPoint2Meshを紹介する。
自己優先型は、ディープニューラルネットワークの重み内の単一の形状から幾何的繰り返しをカプセル化する。
ここでは,Point2Meshが所望の解に収束することを示す。
論文 参考訳(メタデータ) (2020-05-22T10:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。