論文の概要: Regularization of ML models for Earth systems by using longer model timesteps
- arxiv url: http://arxiv.org/abs/2503.18023v1
- Date: Sun, 23 Mar 2025 10:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:33:38.893881
- Title: Regularization of ML models for Earth systems by using longer model timesteps
- Title(参考訳): より長い時間ステップを用いた地球系MLモデルの規則化
- Authors: Raghul Parthipan, Mohit Anand, Hannah M Christensen, Frederic Vitart, Damon J Wischik, Jakob Zscheischler,
- Abstract要約: 正規化は機械学習(ML)モデルの一般化を改善する技術である。
本稿では、カオス的な地球系をモデル化する際に、より長い時間ステップを用いることが、このような正規化にどのように結びつくかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Regularization is a technique to improve generalization of machine learning (ML) models. A common form of regularization in the ML literature is to train on data where similar inputs map to different outputs. This improves generalization by preventing ML models from becoming overconfident in their predictions. This paper shows how using longer timesteps when modelling chaotic Earth systems naturally leads to more of this regularization. We show this in two domains. We explain how using longer model timesteps can improve results and demonstrate that increased regularization is one of the causes. We explain why longer model timesteps lead to improved regularization in these systems and present a procedure to pick the model timestep. We also carry out a benchmarking exercise on ORAS5 ocean reanalysis data to show that a longer model timestep (28 days) than is typically used gives realistic simulations. We suggest that there will be many opportunities to use this type of regularization in Earth system problems because the Earth system is chaotic and the regularization is so easy to implement.
- Abstract(参考訳): 正規化は機械学習(ML)モデルの一般化を改善する技術である。
ML文献における正規化の一般的な形態は、類似の入力が異なる出力にマップされるデータでトレーニングすることである。
これにより、予測においてMLモデルが過信されるのを防ぐことにより、一般化が向上する。
本稿では、カオス的な地球系をモデル化する際に、より長い時間ステップを用いることが、このような正規化にどのように結びつくかを示す。
これを2つの領域で示します。
より長いモデルタイムステップを用いて結果を改善する方法を説明し、正規化の増加が原因の1つであることを実証する。
より長いモデルタイムステップが、これらのシステムにおける正規化の改善につながる理由を説明し、モデルタイムステップを選択する手順を示す。
また,ORAS5海面再解析データを用いて,通常より長いモデル時間(28日)で現実的なシミュレーションを行う。
我々は、地球系がカオスであり、正規化が実装が容易であるため、地球系問題にこの種の正規化を使用する機会が多数存在することを示唆する。
関連論文リスト
- Adaptive time series forecasting with markovian variance switching [1.2891210250935148]
本稿では,オンライン学習理論に基づく分散を推定する新しい手法を提案する。
専門的なアグリゲーション手法を適用して、時間とともにばらつきを学習する。
本手法は, 誤特定に対して頑健であり, 従来の専門家アグリゲーションよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-22T16:40:55Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Learning Hybrid Dynamics Models With Simulator-Informed Latent States [7.801959219897031]
そこで我々は,シミュレーションを用いて学習モデルの潜伏状態を通知するハイブリッドモデリング手法を提案する。
これにより、シミュレータを介して予測を制御することで、エラーの蓄積を防ぐことができる。
学習に基づく設定では、シミュレータを通して潜在状態を推測するダイナミクスとオブザーバを共同で学習する。
論文 参考訳(メタデータ) (2023-09-06T09:57:58Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
本稿では,学習されたタイムドオートマトンとシステムに関する公式知識グラフを組み合わせることで,CPPSのモデルベース異常検出を改善することを目的とする。
モデルと検出された異常の両方を知識グラフに記述し、モデルと検出された異常をより容易に解釈できるようにする。
論文 参考訳(メタデータ) (2023-08-25T15:25:57Z) - Combining Slow and Fast: Complementary Filtering for Dynamics Learning [9.11991227308599]
本研究では,動的モデル学習に対する学習に基づくモデル学習手法を提案する。
また,さらに物理ベースのシミュレータを必要とするハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T13:32:47Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Partially Hidden Markov Chain Linear Autoregressive model: inference and
forecasting [0.0]
体制の変化にともなう時系列は、エコノメトリー、金融、気象学といった領域に多くの関心を集めている。
i) そのような時系列に関連する状態過程は、部分的に隠れたマルコフチェーン(PHMC)によってモデル化される。
本研究では,存在時の観測状態を考慮した隠れ状態推定手法と予測関数を提案する。
論文 参考訳(メタデータ) (2021-02-24T22:12:05Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。