論文の概要: Extracting Dynamical Models from Data
- arxiv url: http://arxiv.org/abs/2110.06917v6
- Date: Wed, 31 Jan 2024 16:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-01 18:26:48.203391
- Title: Extracting Dynamical Models from Data
- Title(参考訳): データから動的モデルを抽出する
- Authors: Michael F. Zimmer
- Abstract要約: システムの基盤となるダイナミクスを決定するという問題は、その状態のデータだけを時間とともに与えることによって、何十年もの間科学者に挑戦してきた。
本稿では,機械学習を用いて位相空間変数の更新をモデル化する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of determining the underlying dynamics of a system when only
given data of its state over time has challenged scientists for decades. In
this paper, the approach of using machine learning to model the updates of the
phase space variables is introduced; this is done as a function of the phase
space variables. (More generally, the modeling is done over functions of the
jet space.) This approach (named FJet) allows one to accurately replicate the
dynamics, and is demonstrated on the examples of the damped harmonic
oscillator, the damped pendulum, and the Duffing oscillator; the underlying
differential equation is also accurately recovered for each example. In
addition, the results in no way depend on how the data is sampled over time
(i.e., regularly or irregularly). It is demonstrated that a regression
implementation of FJet is similar to the model resulting from a Taylor series
expansion of the Runge-Kutta (RK) numerical integration scheme. This
identification confers the advantage of explicitly revealing the function space
to use in the modeling, as well as the associated uncertainty quantification
for the updates. Finally, it is shown in the undamped harmonic oscillator
example that the stability of the updates is stable $10^9$ times longer than
with $4$th-order RK (with time step $0.1$).
- Abstract(参考訳): 時間とともに与えられたデータのみを与えられた場合、システムの基盤となるダイナミクスを決定する問題は、何十年も科学者に挑戦してきた。
本稿では、相空間変数の更新をモデル化するために機械学習を使用する手法を紹介し、相空間変数の関数として実行する。
(より一般的には、モデリングはジェット空間の機能を越えて行われる。)
このアプローチ(fjetと呼ばれる)は、ダイナミクスを正確に再現することができ、減衰調和振動子、減衰振子、ダフィング振動子の例で示される。
さらに、データは時間とともにどのようにサンプリングされるか(定期的に、または不規則に)にもよらない。
FJetの回帰実装は、Range-Kutta (RK) 数値積分スキームのテイラー級数展開によるモデルに類似していることが示されている。
この識別は、モデルで使用する関数空間を明示的に明らかにすることの利点と、関連する更新の不確実性定量化をもたらす。
最後に、アンアンパンプ調和振動子(unamped harmonic oscillator)の例では、更新の安定性が4$th-order rk(時間ステップ0.1$)よりも安定して10^9$倍長いことが示されている。
関連論文リスト
- Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Generative modeling for time series via Schr{\"o}dinger bridge [0.0]
本稿では,SB (Schr'dinger Bridge) に基づく時系列生成モデルを提案する。
これは、経路空間上の基準確率測度と、時系列の合同データ分布と整合した目標測度との間の最適輸送によるエントロピックから構成される。
論文 参考訳(メタデータ) (2023-04-11T09:45:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - On the Dynamics of Inference and Learning [0.0]
本稿では,このベイズ更新過程を連続力学系として扱う。
クラムラーラオ境界が飽和すると、学習率は単純な1/T$パワーローによって制御されることを示す。
論文 参考訳(メタデータ) (2022-04-19T18:04:36Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
私たちはMEDIDAというフレームワークを紹介します: 解釈可能性とデータ同化を伴うモデルエラー発見。
MEDIDAでは、まず、観測状態と予測状態の差からモデル誤差を推定する。
観測結果がノイズである場合、まず、アンサンブルカルマンフィルタ(EnKF)のようなデータ同化手法を用いて、システムのノイズフリー解析状態を提供する。
最後に、レバレンスベクトルマシン(RVM)のような方程式発見手法、すなわちスパーシィプロモーティングベイズ法を用いて、解釈可能でパシモニアスでクローズドな解を同定する。
論文 参考訳(メタデータ) (2021-10-01T17:19:28Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いる。
我々の検証は、このアプローチが元の状態空間に類似した状態空間を復元するだけでなく、新しい時系列を合成できることを示している。
論文 参考訳(メタデータ) (2020-10-13T10:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。