論文の概要: J&H: Evaluating the Robustness of Large Language Models Under Knowledge-Injection Attacks in Legal Domain
- arxiv url: http://arxiv.org/abs/2503.18360v1
- Date: Mon, 24 Mar 2025 05:42:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:31:17.432999
- Title: J&H: Evaluating the Robustness of Large Language Models Under Knowledge-Injection Attacks in Legal Domain
- Title(参考訳): J&H:法域における知識注入攻撃による大規模言語モデルのロバスト性の評価
- Authors: Yiran Hu, Huanghai Liu, Qingjing Chen, Ning Zheng, Chong Wang, Yun Liu, Charles L. A. Clarke, Weixing Shen,
- Abstract要約: 本稿では,ロバストネステストのための法的な知識注入攻撃法を提案する。
本フレームワークの目的は,LLMが法的タスクを遂行する際の演能的推論を行うかどうかを検討することである。
我々は、法律の専門家が現実世界の司法判断で犯す可能性のある誤りを収集した。
- 参考スコア(独自算出の注目度): 12.550611136062722
- License:
- Abstract: As the scale and capabilities of Large Language Models (LLMs) increase, their applications in knowledge-intensive fields such as legal domain have garnered widespread attention. However, it remains doubtful whether these LLMs make judgments based on domain knowledge for reasoning. If LLMs base their judgments solely on specific words or patterns, rather than on the underlying logic of the language, the ''LLM-as-judges'' paradigm poses substantial risks in the real-world applications. To address this question, we propose a method of legal knowledge injection attacks for robustness testing, thereby inferring whether LLMs have learned legal knowledge and reasoning logic. In this paper, we propose J&H: an evaluation framework for detecting the robustness of LLMs under knowledge injection attacks in the legal domain. The aim of the framework is to explore whether LLMs perform deductive reasoning when accomplishing legal tasks. To further this aim, we have attacked each part of the reasoning logic underlying these tasks (major premise, minor premise, and conclusion generation). We have collected mistakes that legal experts might make in judicial decisions in the real world, such as typos, legal synonyms, inaccurate external legal statutes retrieval. However, in real legal practice, legal experts tend to overlook these mistakes and make judgments based on logic. However, when faced with these errors, LLMs are likely to be misled by typographical errors and may not utilize logic in their judgments. We conducted knowledge injection attacks on existing general and domain-specific LLMs. Current LLMs are not robust against the attacks employed in our experiments. In addition we propose and compare several methods to enhance the knowledge robustness of LLMs.
- Abstract(参考訳): LLM(Large Language Models)の規模と能力が増大するにつれて、法律ドメインのような知識集約分野におけるそれらの応用は、広く注目を集めている。
しかし、これらのLSMが推論のドメイン知識に基づいて判断を下すかどうかは疑わしい。
LLMが言語の基本ロジックではなく、特定の単語やパターンのみに基づく場合、'LLM-as-judges'パラダイムは現実世界のアプリケーションに重大なリスクをもたらす。
本研究では,ロバストネステストのための法知識注入攻撃手法を提案し,LLMが法知識と推論論理を習得したかどうかを推定する。
本稿では,法領域における知識注入攻撃下でのLLMの堅牢性を検出するための評価フレームワークJ&Hを提案する。
本フレームワークの目的は,LLMが法的タスクを遂行する際の演能的推論を行うかどうかを検討することである。
この目的をさらに進めるために、我々はこれらの課題の根底にある推論論理の各部分(大前提、小前提、結論生成)を攻撃した。
我々は、タイポス、法的なシノニム、不正確な外部法規の検索など、法律の専門家が現実世界の司法判断で犯す可能性のある誤りを収集した。
しかし、実際の法的実践では、法の専門家はこれらの誤りを見落とし、論理に基づいて判断する傾向がある。
しかし,これらの誤りに直面した場合,LLMは誤読されやすいため,その判断に論理を利用できない可能性がある。
既存の一般およびドメイン固有のLSMに対する知識注入攻撃を行った。
現在のLSMは、我々の実験で使われた攻撃に対して堅牢ではない。
さらに,LLMの知識ロバスト性を高めるために,いくつかの手法を提案し,比較する。
関連論文リスト
- Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
推論誤りを特定し,LLMの性能を評価するための自動評価フレームワークを開発した。
我々の研究は、論理集約的な複雑なタスクに対する推論チェーンの詳細なエラー解析に使用できる評価フレームワークとしても機能する。
論文 参考訳(メタデータ) (2025-02-08T19:49:32Z) - RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios [58.90106984375913]
RuleArenaは、大規模言語モデル(LLM)が推論において複雑な現実世界のルールに従う能力を評価するために設計された、新しくて挑戦的なベンチマークである。
航空会社の荷物手数料、NBA取引、税制の3つの実践的領域をカバーするルールアリーナは、複雑な自然言語命令を扱うのにLLMの習熟度を評価する。
論文 参考訳(メタデータ) (2024-12-12T06:08:46Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
言語モデルの自然言語理解(NLU)能力を評価するための主要な手段として、読解理解(RC)があげられる。
文脈がモデルの内部知識と一致している場合、モデルの回答がコンテキスト理解に由来するのか、あるいは内部情報から生じるのかを識別することは困難である。
この問題に対処するために、架空の事実や実体に基づいて、想像上のデータにRCを使うことを提案する。
論文 参考訳(メタデータ) (2024-04-09T13:08:56Z) - Caveat Lector: Large Language Models in Legal Practice [0.0]
大規模な言語モデルへの関心は、多くのユーザーが生成したテキストの品質を評価するための専門知識を欠いているという事実から来ている。
急流と表面的可視性の危険な組み合わせは、生成されたテキストを信頼する誘惑を招き、過信のリスクを生じさせる。
論文 参考訳(メタデータ) (2024-03-14T08:19:41Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
一般および法的ドメイン LLM は LegalAI の様々なタスクにおいて高いパフォーマンスを示している。
われわれは、法的な実践の論理に基づいて、中国の法的LLMベンチマークLAiWを最初に構築しました。
論文 参考訳(メタデータ) (2023-10-09T11:19:55Z) - LawBench: Benchmarking Legal Knowledge of Large Language Models [35.2812008533622]
大規模言語モデル(LLM)は様々な面で強力な能力を示している。
法的知識がどの程度あるか、そして法的関連タスクを確実に実行できるかは不明だ。
ローベンチは、3つの認知レベルからLLMの法的な能力を正確に評価するために細心の注意を払って設計されている。
論文 参考訳(メタデータ) (2023-09-28T09:35:59Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。