Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings
- URL: http://arxiv.org/abs/2401.04369v1
- Date: Tue, 9 Jan 2024 05:52:02 GMT
- Title: Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings
- Authors: Mulomba Mukendi Christian, Hyebong Choi
- Abstract summary: Air pollution stands as the fourth leading cause of death globally.
This study proposes a novel machine learning approach for accurate air quality prediction using two months of air quality data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollution stands as the fourth leading cause of death globally. While
extensive research has been conducted in this domain, most approaches rely on
large datasets when it comes to prediction. This limits their applicability in
low-resource settings though more vulnerable. This study addresses this gap by
proposing a novel machine learning approach for accurate air quality prediction
using two months of air quality data. By leveraging the World Weather
Repository, the meteorological, air pollutant, and Air Quality Index features
from 197 capital cities were considered to predict air quality for the next
day. The evaluation of several machine learning models demonstrates the
effectiveness of the Random Forest algorithm in generating reliable
predictions, particularly when applied to classification rather than
regression, approach which enhances the model's generalizability by 42%,
achieving a cross-validation score of 0.38 for regression and 0.89 for
classification. To instill confidence in the predictions, interpretable machine
learning was considered. Finally, a cost estimation comparing the
implementation of this solution in high-resource and low-resource settings is
presented including a tentative of technology licensing business model. This
research highlights the potential for resource-limited countries to
independently predict air quality while awaiting larger datasets to further
refine their predictions.
Related papers
- Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
arXiv Detail & Related papers (2024-02-13T03:01:22Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
This study aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
Our research aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
arXiv Detail & Related papers (2023-09-29T03:33:53Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Unleashing Realistic Air Quality Forecasting: Introducing the
Ready-to-Use PurpleAirSF Dataset [4.190243190157989]
This paper introduces PurpleAirSF, a comprehensive and easily accessible dataset from the PurpleAir network.
We present a detailed account of the data collection and processing methods employed to build PurpleAirSF.
We conduct preliminary experiments using both classic and modern-temporal forecasting models, thereby establishing a benchmark for future air quality forecasting tasks.
arXiv Detail & Related papers (2023-06-24T12:10:16Z) - Forecast-Aware Model Driven LSTM [0.0]
Poor air quality can have a significant impact on human health.
Traditional methods used to correct model bias make assumptions about linearity and the underlying distribution.
Deep learning holds promise for air quality forecasting in the presence of extreme air quality events.
arXiv Detail & Related papers (2023-03-23T00:03:07Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.