論文の概要: Towards Explainable Vulnerability Detection with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.09701v3
- Date: Tue, 21 Jan 2025 03:27:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:43.493742
- Title: Towards Explainable Vulnerability Detection with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた説明可能な脆弱性検出に向けて
- Authors: Qiheng Mao, Zhenhao Li, Xing Hu, Kui Liu, Xin Xia, Jianling Sun,
- Abstract要約: ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
大規模言語モデル(LLMs)の出現は、その高度な生成能力による変換ポテンシャルを導入している。
本稿では,脆弱性検出と説明という2つのタスクにLLMを専門化する自動フレームワークであるLLMVulExpを提案する。
- 参考スコア(独自算出の注目度): 17.96542494363619
- License:
- Abstract: Software vulnerabilities pose significant risks to the security and integrity of software systems. Although prior studies have explored vulnerability detection using deep learning and pre-trained models, these approaches often fail to provide the detailed explanations necessary for developers to understand and remediate vulnerabilities effectively. The advent of large language models (LLMs) has introduced transformative potential due to their advanced generative capabilities and ability to comprehend complex contexts, offering new possibilities for addressing these challenges. In this paper, we propose LLMVulExp, an automated framework designed to specialize LLMs for the dual tasks of vulnerability detection and explanation. To address the challenges of acquiring high-quality annotated data and injecting domain-specific knowledge, LLMVulExp leverages prompt-based techniques for annotating vulnerability explanations and finetunes LLMs using instruction tuning with Low-Rank Adaptation (LoRA), enabling LLMVulExp to detect vulnerability types in code while generating detailed explanations, including the cause, location, and repair suggestions. Additionally, we employ a Chain-of-Thought (CoT) based key code extraction strategy to focus LLMs on analyzing vulnerability-prone code, further enhancing detection accuracy and explanatory depth. Our experimental results demonstrate that LLMVulExp achieves over a 90% F1 score on the SeVC dataset, effectively combining high detection accuracy with actionable and coherent explanations. This study highlights the feasibility of utilizing LLMs for real-world vulnerability detection and explanation tasks, providing critical insights into their adaptation and application in software security.
- Abstract(参考訳): ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
従来の研究では、ディープラーニングと事前訓練されたモデルを使った脆弱性検出が検討されていたが、これらのアプローチは、開発者が脆弱性を効果的に理解し、修正するのに必要な詳細な説明を提供するのに失敗することが多い。
大規模言語モデル(LLM)の出現は、それらの高度な生成能力と複雑なコンテキストを理解する能力によって、これらの課題に対処する新たな可能性を提供し、変革的ポテンシャルをもたらした。
本稿では,脆弱性検出と説明という2つのタスクにLLMを専門化する自動フレームワークであるLLMVulExpを提案する。
高品質なアノテートデータを取得し、ドメイン固有の知識を注入するという課題に対処するため、LLMVulExpは、Low-Rank Adaptation (LoRA)を使用したインストラクションチューニングを使用して脆弱性説明と微調整をアノテートするためのプロンプトベースのテクニックを活用し、原因、位置、修正提案を含む詳細な説明を生成しながら、コード内の脆弱性タイプを検出することができる。
さらに、我々はChain-of-Thought(CoT)ベースのキーコード抽出戦略を採用し、脆弱性発生コードの解析にLLMを集中させ、検出精度と説明深度をさらに向上させる。
実験の結果, LLMVulExpはSeVCデータセット上で90%以上のF1スコアを達成し, 高い検出精度と動作性, 一貫性のある説明を効果的に組み合わせた。
本研究は,LLMを現実の脆弱性検出・説明タスクに活用する可能性を強調し,ソフトウェアセキュリティへの適応と応用について重要な知見を提供する。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - RealVul: Can We Detect Vulnerabilities in Web Applications with LLM? [4.467475584754677]
本稿では,PHP 脆弱性検出用に設計された最初の LLM ベースのフレームワークである RealVul を紹介する。
コードの合理化と不要なセマンティック情報を排除しながら、潜在的な脆弱性トリガを分離できます。
また、データ合成法の改善により、PHPの脆弱性サンプルが不足している問題にも対処する。
論文 参考訳(メタデータ) (2024-10-10T03:16:34Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models [12.465060623389151]
本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
論文 参考訳(メタデータ) (2024-06-11T13:42:57Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
ソースコードの脆弱性発見を支援するために,大規模言語モデル(LLM)を提案する。
目的は、複数の最先端のLCMをテストし、最も優れたプロンプト戦略を特定することである。
LLMは従来の静的解析ツールよりも多くの問題を特定でき、リコールやF1スコアの点で従来のツールよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T14:59:19Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。