論文の概要: Neuro-symbolic Weak Supervision: Theory and Semantics
- arxiv url: http://arxiv.org/abs/2503.18509v1
- Date: Mon, 24 Mar 2025 10:02:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:09.916932
- Title: Neuro-symbolic Weak Supervision: Theory and Semantics
- Title(参考訳): ニューロシンボリック弱視:理論とセマンティックス
- Authors: Nijesh Upreti, Vaishak Belle,
- Abstract要約: 帰納的論理プログラミング(ILP)を統合したニューロシンボリック・フレームワークのセマンティクスを提案する。
ILPは、ラベル遷移のための論理仮説空間を定義し、意味論を明確にし、解釈可能なパフォーマンス標準を確立する。
このハイブリッドアプローチは、弱教師付き設定における堅牢性、透明性、説明責任を改善する。
- 参考スコア(独自算出の注目度): 5.455744338342196
- License:
- Abstract: Weak supervision allows machine learning models to learn from limited or noisy labels, but it introduces challenges in interpretability and reliability - particularly in multi-instance partial label learning (MI-PLL), where models must resolve both ambiguous labels and uncertain instance-label mappings. We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP) to improve MI-PLL by providing structured relational constraints that guide learning. Within our semantic characterization, ILP defines a logical hypothesis space for label transitions, clarifies classifier semantics, and establishes interpretable performance standards. This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings, ensuring neural predictions align with domain knowledge. By embedding weak supervision into a logical framework, we enhance both interpretability and learning, making weak supervision more suitable for real-world, high-stakes applications.
- Abstract(参考訳): 特にMI-PLL(Multi-instance partial label learning)では、モデルはあいまいなラベルと不確実なインスタンスラベルマッピングの両方を解決しなければならない。
帰納的論理プログラミング(ILP)を統合したニューロシンボリック・フレームワークのセマンティクスを提案し,学習を導く構造的関係制約を提供することでMI-PLLを改善する。
我々のセマンティック・キャラクタリゼーションの中で、ILPはラベル遷移の論理的仮説空間を定義し、分類器のセマンティクスを明確にし、解釈可能な性能標準を確立する。
このハイブリッドアプローチは、弱教師付きセッティングにおける堅牢性、透明性、説明責任を改善し、ニューラルネットワークの予測がドメイン知識と整合することを保証する。
弱い監督を論理的枠組みに組み込むことで、解釈可能性と学習性を両立させ、弱い監督を現実の高精細なアプリケーションに適合させる。
関連論文リスト
- Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
一階述語論理(FOL)推論はインテリジェントシステムにおいて重要である。
既存のベンチマークは、広範囲の人間のアノテーションや手作りテンプレートに依存していることが多い。
本稿では,大言語モデルの生成強度を記号型プローサの厳密性と精度で相乗化するProverGenという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-10T15:31:54Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - AS-XAI: Self-supervised Automatic Semantic Interpretation for CNN [5.42467030980398]
本稿では,自動意味解釈人工知能(AS-XAI)フレームワークを提案する。
モデル決定のグローバルな意味解釈には、透過的な埋め込み意味抽出空間と行中心主成分分析(PCA)を用いる。
提案手法は, 流通圏内における共通意味論的解釈を含む, 広範囲な実践的応用を提供する。
論文 参考訳(メタデータ) (2023-12-02T10:06:54Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiagは、セマンティックセグメンテーションのためのニューラルネットワークによる半教師付き学習フレームワークである。
私たちの重要な洞察は、記号的知識によって識別される擬似ラベル内の衝突は、強いが一般的に無視される学習信号として機能する、ということです。
本稿では,論理規則の集合として意味論的概念の構造的抽象化を定式化するデータ・ハングリーセグメンテーションシナリオにおけるLogicDiagの実践的応用について紹介する。
論文 参考訳(メタデータ) (2023-08-24T06:50:07Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Learnability with Indirect Supervision Signals [74.39088325025378]
間接的な監視信号からの学習は、ゴールドラベルが欠落している場合やコストが高すぎる場合、現実世界のAIアプリケーションにおいて重要である。
我々は、ゴールドラベルとゼロでない相互情報を含む変数によって監督が提供される場合に、マルチクラス分類のための統一的な理論フレームワークを開発する。
本フレームワークは文献における仮定を緩和し,未知,非可逆,インスタンス依存のトランジションによる学習を支援する。
論文 参考訳(メタデータ) (2020-06-15T21:57:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。