論文の概要: Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
- arxiv url: http://arxiv.org/abs/2503.18589v1
- Date: Mon, 24 Mar 2025 11:46:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:46.823156
- Title: Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
- Title(参考訳): マルチエージェント軌道モデリングのための統一不確かさ認識拡散
- Authors: Guillem Capellera, Antonio Rubio, Luis Ferraz, Antonio Agudo,
- Abstract要約: U2Diff(英語版)は、軌道の完備化を扱うために設計された、テキストを融合した拡散モデルである。
また、後処理にランクニューラルネットワークを導入し、生成されたモード毎にtextbferror の確率推定を可能にする。
本手法は,4つの挑戦的スポーツデータセットの軌跡完了と予測において,最先端のソリューションよりも優れる。
- 参考スコア(独自算出の注目度): 13.993231805213354
- License:
- Abstract: Multi-agent trajectory modeling has primarily focused on forecasting future states, often overlooking broader tasks like trajectory completion, which are crucial for real-world applications such as correcting tracking data. Existing methods also generally predict agents' states without offering any state-wise measure of uncertainty. Moreover, popular multi-modal sampling methods lack any error probability estimates for each generated scene under the same prior observations, making it difficult to rank the predictions during inference time. We introduce U2Diff, a \textbf{unified} diffusion model designed to handle trajectory completion while providing state-wise \textbf{uncertainty} estimates jointly. This uncertainty estimation is achieved by augmenting the simple denoising loss with the negative log-likelihood of the predicted noise and propagating latent space uncertainty to the real state space. Additionally, we incorporate a Rank Neural Network in post-processing to enable \textbf{error probability} estimation for each generated mode, demonstrating a strong correlation with the error relative to ground truth. Our method outperforms the state-of-the-art solutions in trajectory completion and forecasting across four challenging sports datasets (NBA, Basketball-U, Football-U, Soccer-U), highlighting the effectiveness of uncertainty and error probability estimation. Video at https://youtu.be/ngw4D4eJToE
- Abstract(参考訳): マルチエージェント・トラジェクトリ・モデリングは主に将来の状態を予測することに焦点を当てており、トラジェクトリ・コンプリートのようなより広範なタスクを見落としていることが多い。
既存の手法は一般に、不確実性の国家的尺度を提供することなく、エージェントの状態を予測している。
さらに、一般的なマルチモーダルサンプリング手法では、同じ事前観測条件下で生成された各シーンの誤差確率推定を欠いているため、推定時間における予測のランク付けが困難である。
U2Diffは、状態ワイドな「textbf{uncertainty}」推定を共同で提供しながら、軌跡の完備化を扱うように設計された拡散モデルである。
この不確実性推定は、予測された騒音の負の対数類似度で単純な復調損失を増大させ、実状態空間に潜時空間の不確かさを伝播させることにより達成される。
さらに,各生成モードに対する‘textbf{error probability}’推定を後処理に組み込むことで,地中真理に対する誤差と強い相関関係を示す。
提案手法は,NBA,バスケットボール-U,サッカー-U,サッカー-Uの4つの挑戦的スポーツデータセット(NBA,バスケットボール-U,サッカー-U,サッカー-U)のトラジェクトリ完了と予測における最先端のソリューションよりも優れており,不確実性とエラー確率の推定が重要である。
https://youtu.be/ngw4D4eJToE
関連論文リスト
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
本稿では,H"older Divergence (HD)に基づく新しいアルゴリズムを導入し,多視点学習の信頼性を高める。
デンプスター・シェーファー理論を通じて、異なるモダリティからの不確実性の統合により、包括的な結果が生成される。
数学的には、HDは実際のデータ分布とモデルの予測分布の間の距離'をよりよく測定できることを証明している。
論文 参考訳(メタデータ) (2024-10-29T04:29:44Z) - DiffSF: Diffusion Models for Scene Flow Estimation [17.512660491303684]
本稿では,変圧器を用いたシーンフロー推定とデノナイズ拡散モデルを組み合わせたDiffSFを提案する。
拡散過程は, 従来の手法に比べて, 予測の堅牢性を大幅に向上させることを示す。
異なる初期状態で複数回サンプリングすることにより、復調過程は複数の仮説を予測し、出力の不確実性を測定することができる。
論文 参考訳(メタデータ) (2024-03-08T14:06:15Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
エンコーダ・デコーダをベースとした深層アンサンブルネットワークは,認識と予測の不確実性の両方を同時に捕捉する。
全体として、深層アンサンブルはより堅牢な予測を提供し、上流の不確実性の考慮により、モデルの推定精度をさらに高めた。
論文 参考訳(メタデータ) (2023-05-26T04:27:48Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - A Two-Block RNN-based Trajectory Prediction from Incomplete Trajectory [14.725386295605666]
本稿では,ベイズフィルタフレームワークの推論ステップを近似した2ブロックRNNモデルを提案する。
提案手法は,3つのベースライン計算法と比較して予測精度を向上することを示す。
また,提案手法は誤り検出がない場合の基準値よりも予測精度がよいことを示す。
論文 参考訳(メタデータ) (2022-03-14T13:39:44Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - PrognoseNet: A Generative Probabilistic Framework for Multimodal
Position Prediction given Context Information [2.5302126831371226]
本稿では,予測問題を分類タスクとして再構成し,強力なツールを実現する手法を提案する。
潜在変数のスマートな選択は、分類問題と非常に単純化された回帰問題の組み合わせとして、ログ様関数の再構成を可能にする。
提案手法は文脈情報を容易に組み込むことができ、データの事前処理は不要である。
論文 参考訳(メタデータ) (2020-10-02T06:13:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。