Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
- URL: http://arxiv.org/abs/2503.18658v1
- Date: Mon, 24 Mar 2025 13:23:46 GMT
- Title: Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
- Authors: Christopher Ummerle, Antonio Giganti, Sara Mandelli, Paolo Bestagini, Stefano Tubaro,
- Abstract summary: This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps.<n>The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
- Score: 15.868193361155656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing plays a crucial role in monitoring Earth's ecosystems, yet satellite-derived data often suffer from limited spatial resolution, restricting their applicability in atmospheric modeling and climate research. In this work, we propose a deep learning-based Super-Resolution (SR) framework that leverages land cover information to enhance the spatial accuracy of Biogenic Volatile Organic Compounds (BVOCs) emissions, with a particular focus on isoprene. Our approach integrates land cover priors as emission drivers, capturing spatial patterns more effectively than traditional methods. We evaluate the model's performance across various climate conditions and analyze statistical correlations between isoprene emissions and key environmental information such as cropland and tree cover data. Additionally, we assess the generalization capabilities of our SR model by applying it to unseen climate zones and geographical regions. Experimental results demonstrate that incorporating land cover data significantly improves emission SR accuracy, particularly in heterogeneous landscapes. This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps. The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
Related papers
- Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
Air quality prediction plays a crucial role in public health and environmental protection.
Existing works underestimate the critical role atmospheric conditions in air quality prediction.
MDSTNet is an encoder framework explicitly that captures atmosphere-pollution dependencies for prediction.
ChinaAirNet is the first dataset combining air quality records with multi-pressure-level meteorological observations.
arXiv Detail & Related papers (2025-04-14T09:18:11Z) - Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning [4.414885369283509]
Given inputs of diverse soil characteristics and climate data, we aimed to build a model to predict accurate land emissions.<n>SDSA-KGML models achieve higher local accuracy for the specified states in the Midwest Region.
arXiv Detail & Related papers (2025-02-20T18:52:24Z) - Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data.<n>This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change.<n>We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features.
arXiv Detail & Related papers (2024-10-21T04:24:10Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
We apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7% of the Earth's land surface area.
We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude.
Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models.
arXiv Detail & Related papers (2023-10-02T00:11:47Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Super-Resolution of BVOC Maps by Adapting Deep Learning Methods [17.819699053848197]
Biogenic Volatile Organic Compounds (BVOCs) play a critical role in biosphere-atmosphere interactions.
Most available BVOC data are obtained on a loose and sparse sampling grid or on small regions.
High-resolution BVOC data are desirable in many applications, such as air quality, atmospheric chemistry, and climate monitoring.
arXiv Detail & Related papers (2023-02-15T10:21:38Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
arXiv Detail & Related papers (2022-09-26T05:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.