Super-Resolution of BVOC Maps by Adapting Deep Learning Methods
- URL: http://arxiv.org/abs/2302.07570v4
- Date: Mon, 3 Jul 2023 11:04:30 GMT
- Title: Super-Resolution of BVOC Maps by Adapting Deep Learning Methods
- Authors: Antonio Giganti, Sara Mandelli, Paolo Bestagini, Marco Marcon, Stefano
Tubaro
- Abstract summary: Biogenic Volatile Organic Compounds (BVOCs) play a critical role in biosphere-atmosphere interactions.
Most available BVOC data are obtained on a loose and sparse sampling grid or on small regions.
High-resolution BVOC data are desirable in many applications, such as air quality, atmospheric chemistry, and climate monitoring.
- Score: 17.819699053848197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biogenic Volatile Organic Compounds (BVOCs) play a critical role in
biosphere-atmosphere interactions, being a key factor in the physical and
chemical properties of the atmosphere and climate. Acquiring large and
fine-grained BVOC emission maps is expensive and time-consuming, so most
available BVOC data are obtained on a loose and sparse sampling grid or on
small regions. However, high-resolution BVOC data are desirable in many
applications, such as air quality, atmospheric chemistry, and climate
monitoring. In this work, we investigate the possibility of enhancing BVOC
acquisitions, further explaining the relationships between the environment and
these compounds. We do so by comparing the performances of several
state-of-the-art neural networks proposed for image Super-Resolution (SR),
adapting them to overcome the challenges posed by the large dynamic range of
the emission and reduce the impact of outliers in the prediction. Moreover, we
also consider realistic scenarios, considering both temporal and geographical
constraints. Finally, we present possible future developments regarding SR
generalization, considering the scale-invariance property and super-resolving
emissions from unseen compounds.
Related papers
- Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts [0.0]
This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts.
We demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events.
We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP.
arXiv Detail & Related papers (2024-10-21T22:13:09Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
This paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability like PDP.
The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models.
arXiv Detail & Related papers (2024-08-12T04:29:54Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
We apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7% of the Earth's land surface area.
We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude.
Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models.
arXiv Detail & Related papers (2023-10-02T00:11:47Z) - Multi-BVOC Super-Resolution Exploiting Compounds Inter-Connection [17.819699053848197]
Biogenic Volatile Organic Compounds (BVOCs) emitted from the terrestrial ecosystem into the Earth's atmosphere are an important component of atmospheric chemistry.
Due to the scarcity of measurement, a reliable enhancement of BVOCs emission maps can aid in providing denser data for atmospheric chemical, climate, and air quality models.
We propose a strategy to super-resolve coarse BVOC emission maps by simultaneously exploiting the contributions of different compounds.
arXiv Detail & Related papers (2023-05-23T15:58:53Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
arXiv Detail & Related papers (2022-09-26T05:45:16Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.