論文の概要: Geometric Preference Elicitation for Minimax Regret Optimization in Uncertainty Matroids
- arxiv url: http://arxiv.org/abs/2503.18668v1
- Date: Mon, 24 Mar 2025 13:35:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:41.322439
- Title: Geometric Preference Elicitation for Minimax Regret Optimization in Uncertainty Matroids
- Title(参考訳): 不確かさマトロイドの最小値レグレット最適化のための幾何学的選好除去
- Authors: Aditya Sai Ellendula, Arun K Pujari, Vikas Kumar,
- Abstract要約: 本稿では,不確実なマトロイド最適化のための効率的な選好抽出フレームワークを提案する。
このアプローチの中核的なイノベーションは、ユーザの好みを体系的に引き出す能力にあります。
本手法は,数ラウンドで後悔を減らし,正確な最適化を実現することを目的としている。
- 参考スコア(独自算出の注目度): 3.06577309617207
- License:
- Abstract: This paper presents an efficient preference elicitation framework for uncertain matroid optimization, where precise weight information is unavailable, but insights into possible weight values are accessible. The core innovation of our approach lies in its ability to systematically elicit user preferences, aligning the optimization process more closely with decision-makers' objectives. By incrementally querying preferences between pairs of elements, we iteratively refine the parametric uncertainty regions, leveraging the structural properties of matroids. Our method aims to achieve the exact optimum by reducing regret with a few elicitation rounds. Additionally, our approach avoids the computation of Minimax Regret and the use of Linear programming solvers at every iteration, unlike previous methods. Experimental results on four standard matroids demonstrate that our method reaches optimality more quickly and with fewer preference queries than existing techniques.
- Abstract(参考訳): 本稿では,正確な重み情報の入手が不可能なマットロイド最適化のための効率的な選好抽出フレームワークを提案する。
このアプローチの中核的な革新は、ユーザの好みを体系的に引き出す能力にあり、最適化プロセスが意思決定者の目的とより密接に一致していることにあります。
一対の要素間の好みを漸進的にクエリすることで、パラメトリック不確かさ領域を反復的に洗練し、マトロイドの構造的特性を活用する。
本手法は,数ラウンドで後悔を減らし,正確な最適化を実現することを目的としている。
さらに,本手法は,従来の手法と異なり,Minimax Regretの計算やリニアプログラミングの繰り返しにおける使用を回避している。
4つの標準マトロイドに対する実験結果から,提案手法は従来の手法よりも高速で,好みのクエリが少ないことがわかった。
関連論文リスト
- Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization [2.1485350418225244]
低ランク最適化問題に対する類似の緩和型サンプル戦略を構築した。
ほぼ最適解が得られる半定緩和とランダムな丸めスキームを導出する。
我々は、緩和とサンプリング方式の有効性とスケーラビリティを数値的に説明する。
論文 参考訳(メタデータ) (2025-01-06T11:31:41Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Multi-fidelity Constrained Optimization for Stochastic Black Box
Simulators [1.6385815610837167]
上記の問題に対処するために、Scout-Nd (Stochastic Constrained Optimization for N dimensions) アルゴリズムを導入する。
Scout-Ndは効率よく勾配を推定し、推定器勾配のノイズを低減し、計算労力をさらに削減するために多重忠実性スキームを適用する。
提案手法を標準ベンチマークで検証し,既存の手法よりも優れた性能を示すパラメータの最適化の有効性を示す。
論文 参考訳(メタデータ) (2023-11-25T23:36:38Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Predict+Optimize for Packing and Covering LPs with Unknown Parameters in
Constraints [5.762370982168012]
本稿では,予測+設定のための新規かつ実用的な枠組みを提案するが,目的と制約の両方に未知のパラメータを持つ。
本稿では, 補正関数の概念と, 損失関数に付加的なペナルティ項を導入し, 真のパラメータが明らかにされた後, 推定された最適解を実現可能な解に変換する現実的なシナリオをモデル化する。
私たちのアプローチは、マンディとガンズの以前の研究にインスピレーションを受けています。
論文 参考訳(メタデータ) (2022-09-08T09:28:24Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
これらの設定の聖杯は、プライバシーと過剰な人口減少の間の最適なトレードオフを保証することです。
微分プライベート・ミニマックス最適化(DP-SMO)問題を解くための一般的なフレームワークを提供する。
我々のフレームワークは、非滑らかな微分プライベート凸最適化(DP-SCO)のための最近提案されたフェイズド・ERM法[20]から着想を得たものである。
論文 参考訳(メタデータ) (2022-06-01T10:03:20Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
機械学習における制約付き最適化問題の一家系を考察する。
我々のキーとなる考え方は、閾値パラメータをモデルパラメータの関数として表現するレート制約のある最適化を定式化することである。
本稿では, 標準勾配法を用いて, 結果の最適化問題を解く方法を示す。
論文 参考訳(メタデータ) (2021-07-23T00:04:39Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。