論文の概要: Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
- arxiv url: http://arxiv.org/abs/2503.18672v3
- Date: Tue, 15 Apr 2025 13:10:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:07:39.117015
- Title: Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
- Title(参考訳): CLIPに基づくクラスインクリメンタル学習のための特徴校正強化パラメータ合成
- Authors: Juncen Guo, Yang Liu, Xiaoguang Zhu, Lianlong Sun, Liangyu Teng, Jingyi Wu, Di Li, Wei Zhou, Liang Song,
- Abstract要約: クラスインクリメンタルラーニング(Class-Incremental Learning, CIL)は、モデルが従来のクラスを維持しながら、新しいクラスの知識を継続的に学習することを可能にする。
従来のCILメソッドは主に視覚的特徴に依存しており、複雑なマルチモーダルシナリオでの有効性を制限している。
モデル固有の一般化能力を保ちながら破滅的な一般化を緩和する特徴強化合成(FCPS)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.253058594622017
- License:
- Abstract: Class-Incremental Learning (CIL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CIL methods primarily rely on visual features, which limits their effectiveness in complex, multimodal scenarios. In contrast, VLMs show promising potential for enhancing CIL by leveraging pre-trained knowledge and integrating multi-modal semantic cues such as text and vision. However, existing approaches struggle to mitigate catastrophic forgetting while preserving the generalization strengths of VLMs across diverse modalities. To address these challenges, we propose a Feature Calibration Enhanced Parameter Synthesis (FCPS) framework. Specifically, FCPS introduces a dynamic parameter adjustment mechanism that iteratively calibrates the contribution of original visual features to the final class decision, thus preserving the model's intrinsic generalization capability across modalities. Simultaneously, parameter integration enables effective knowledge transfer, maintaining a balance between acquiring new class representations and preserving old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
- Abstract(参考訳): クラスインクリメンタルラーニング(Class-Incremental Learning, CIL)は、モデルが従来のクラスを維持しながら新しいクラス知識を継続的に学習し、動的で現実的な環境への適応と進化を容易にすることを可能にする。
従来のCILメソッドは主に視覚的特徴に依存しており、複雑なマルチモーダルシナリオでの有効性を制限している。
対照的に、VLMは、事前訓練された知識を活用し、テキストやビジョンのようなマルチモーダルなセマンティックキューを統合することで、CILを強化する有望な可能性を示している。
しかし、既存のアプローチは、様々なモードにわたるVLMの一般化強度を保ちながら、破滅的な忘れを軽減するのに苦労している。
これらの課題に対処するため,我々は特徴校正拡張パラメータ合成(FCPS)フレームワークを提案する。
具体的には、FCPSは、最終的なクラス決定に対する元の視覚的特徴の寄与を反復的に校正する動的パラメータ調整機構を導入し、モデルの本質的な一般化能力をモダリティにわたって保持する。
同時に、パラメータ統合は効果的な知識伝達を可能にし、新しいクラス表現の獲得と古い知識の保存のバランスを維持する。
CIFAR100 と ImageNet100 のベンチマーク実験により,提案手法の優位性を検証した。
関連論文リスト
- Sculpting [CLS] Features for Pre-Trained Model-Based Class-Incremental Learning [3.73232466691291]
クラス増分学習は、古いクラスを忘れることなく、新しいクラスの知識を継続的に獲得するモデルを必要とする。
事前学習されたモデルは、クラス増分学習において強い性能を示してきたが、新しい概念を学ぶ際に破滅的な忘れをしがちである。
本稿では,新しいパラメータ効率の高い微調整モジュール「Learn and Calibrate」 (LuCA) を導入する。
各学習セッションで、最後のトークンの上にスパースLuCAモジュールをデプロイし、それを'Token-level Sparse and Adaptation'(TO)と呼ぶ。
論文 参考訳(メタデータ) (2025-02-20T17:37:08Z) - Retaining and Enhancing Pre-trained Knowledge in Vision-Language Models with Prompt Ensembling [5.6987175375687995]
グループワイド・プロンプト・アンサンブル(GPE)と呼ばれる新しいプロンプト・アンサンブル学習手法を提案する。
提案手法は,データ分散シフトに対するロバスト性を改善しつつ,新たなドメイン知識を取り入れたCLIPのゼロショット機能の向上を目的としている。
当社のアプローチは,ゼロショット能力を保護しながら,CLIPの適応性を最適化するため,マスク付き注意によるグループ化の促進,モデルの表現を損なうことなく,新たなドメインインサイトをシームレスに統合するための補助的なプロンプトの導入,オリジナルと新しい知識を効果的にマージするアンサンブル学習戦略の3つの戦略に基づいている。
論文 参考訳(メタデータ) (2024-12-10T00:40:31Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
本稿では,Seq FTのレンズからの進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、先進的なSlow Learner with Alignment(S++)フレームワークを導入する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させるアライメントを含む。
論文 参考訳(メタデータ) (2024-08-15T17:50:07Z) - CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
インクリメンタル・プロンプト学習のための連続的生成学習を提案する。
変分オートエンコーダを用いてクラス条件分布を学習する。
このような生成的リプレイアプローチは、ゼロショット機能を改善しつつ、新しいタスクに適応できることを示す。
論文 参考訳(メタデータ) (2024-07-22T16:51:28Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
本稿では、事前学習された視覚言語モデル(例えば、CLIP)を利用して、さらなる適応を可能にするアプローチを提案する。
いくつかの従来のベンチマークの実験は、常に現在の最先端よりも顕著な改善のマージンを示している。
論文 参考訳(メタデータ) (2023-10-31T10:45:03Z) - Synthetic Sample Selection for Generalized Zero-Shot Learning [4.264192013842096]
Generalized Zero-Shot Learning (GZSL) はコンピュータビジョンにおいて重要な研究領域となっている。
本稿では,強化学習を用いた合成特徴選択のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T03:22:43Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。