論文の概要: Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3
- arxiv url: http://arxiv.org/abs/2405.18510v1
- Date: Tue, 28 May 2024 18:26:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:13:00.879007
- Title: Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3
- Title(参考訳): AIと人間の感情アライメントの改善: 安定拡散v1, DALL-E2, DALL-E3で表される感情の人間のレーティング
- Authors: James Derek Lomas, Willem van der Maden, Sohhom Bandyopadhyay, Giovanni Lion, Nirmal Patel, Gyanesh Jain, Yanna Litowsky, Haian Xue, Pieter Desmet,
- Abstract要約: 生成AIシステムは、テキストや画像を通じて感情を表現する能力がますます高まっている。
生成的AIによって表現される感情と人間の知覚のアライメントを測定する。
我々は、アライメントが使用するAIモデルと感情そのものに大きく依存していることを示します。
- 参考スコア(独自算出の注目度): 10.76478480925475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI systems are increasingly capable of expressing emotions via text and imagery. Effective emotional expression will likely play a major role in the efficacy of AI systems -- particularly those designed to support human mental health and wellbeing. This motivates our present research to better understand the alignment of AI expressed emotions with the human perception of emotions. When AI tries to express a particular emotion, how might we assess whether they are successful? To answer this question, we designed a survey to measure the alignment between emotions expressed by generative AI and human perceptions. Three generative image models (DALL-E 2, DALL-E 3 and Stable Diffusion v1) were used to generate 240 examples of images, each of which was based on a prompt designed to express five positive and five negative emotions across both humans and robots. 24 participants recruited from the Prolific website rated the alignment of AI-generated emotional expressions with a text prompt used to generate the emotion (i.e., "A robot expressing the emotion amusement"). The results of our evaluation suggest that generative AI models are indeed capable of producing emotional expressions that are well-aligned with a range of human emotions; however, we show that the alignment significantly depends upon the AI model used and the emotion itself. We analyze variations in the performance of these systems to identify gaps for future improvement. We conclude with a discussion of the implications for future AI systems designed to support mental health and wellbeing.
- Abstract(参考訳): 生成AIシステムは、テキストや画像を通じて感情を表現する能力がますます高まっている。
効果的な感情表現は、AIシステム、特に人間のメンタルヘルスと幸福をサポートするように設計されたシステムにおいて、大きな役割を果たす可能性が高い。
これは、AI表現された感情と人間の感情の知覚との整合をよりよく理解するために、我々の現在の研究を動機付けます。
AIが特定の感情を表現しようとするとき、その感情が成功するかどうかをどうやって評価すればよいのか?
この問いに答えるために、私たちは、生成的AIによって表現される感情と人間の知覚との整合性を測定する調査を設計した。
3つの生成画像モデル(DALL-E 2、DALL-E 3、Stable Diffusion v1)を用いて240のサンプル画像を生成した。
Prolificのウェブサイトから募集された24人の参加者は、感情を生成するために使用されるテキストプロンプト(つまり「感情を楽しませるロボット」)とAIが生成する感情表現のアライメントを評価した。
評価の結果,生成型AIモデルでは,人間の感情に順応した感情表現を生成できることが示唆されたが,そのアライメントは使用するAIモデルと感情そのものに大きく依存していることが示唆された。
これらのシステムの性能の変動を分析し、将来の改善のためのギャップを特定する。
我々は、メンタルヘルスと幸福をサポートするように設計された将来のAIシステムへの影響についての議論で締めくくった。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - emotion2vec: Self-Supervised Pre-Training for Speech Emotion
Representation [42.29118614670941]
普遍的な音声感情表現モデルである感情2vecを提案する。
感情2vecは自己監督型オンライン蒸留を通じてラベルなしの感情データに基づいて事前訓練される。
最先端の訓練済みユニバーサルモデルや感情スペシャリストモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-23T07:46:55Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - A Portrait of Emotion: Empowering Self-Expression through AI-Generated
Art [0.0]
本研究では,創造的表現を通じて著者の認知過程を反映する生成人工知能(AI)の可能性と限界について検討した。
その結果,主イベントに対する著者の感情の記述に基づく画像の嗜好が示された。
生成AIを用いた研究フレームワークは、関連する分野におけるAIベースの介入を設計するのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T06:54:53Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
次世代の人工知能(AEI)は、より深く、より有意義な人間と機械の相互作用に対するユーザの欲求に対処するために、中心的な段階を採っている。
心理学における歴史的焦点である感情の理論とは異なり、感情モデルは記述的な道具である。
この研究は、社会ロボティクス、人間と機械の相互作用、メンタルヘルスケア、計算心理学に幅広い影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-15T15:21:30Z) - Emotion Eliciting Machine: Emotion Eliciting Conversation Generation
based on Dual Generator [18.711852474600143]
ユーザのポジティブな感情を誘発する応答を生成することを目的としたポジティブな感情抽出の問題を研究する。
この問題に対処するために,弱い教師付き感情除去機械(EEM)を提案する。
EEMは、ポジティブな感情抽出で応答を生成する際に既存のモデルより優れています。
論文 参考訳(メタデータ) (2021-05-18T03:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。