論文の概要: A Real-Time Human Action Recognition Model for Assisted Living
- arxiv url: http://arxiv.org/abs/2503.18957v1
- Date: Tue, 18 Mar 2025 20:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-30 06:39:00.437259
- Title: A Real-Time Human Action Recognition Model for Assisted Living
- Title(参考訳): 生活支援のためのリアルタイム人間行動認識モデル
- Authors: Yixuan Wang, Paul Stynes, Pramod Pathak, Cristina Muntean,
- Abstract要約: 本研究では,ディープラーニングモデルとライブビデオ予測・警告システムを組み合わせたリアルタイム人行動認識モデルを提案する。
TimeSformerは、主要なマクロF1スコア(95.33%)、リコール(95.49%)、精度(95.19%)を生かして、リアルタイム人間行動認識モデルを開発するために提案されている。
- 参考スコア(独自算出の注目度): 6.151557910924519
- License:
- Abstract: Ensuring the safety and well-being of elderly and vulnerable populations in assisted living environments is a critical concern. Computer vision presents an innovative and powerful approach to predicting health risks through video monitoring, employing human action recognition (HAR) technology. However, real-time prediction of human actions with high performance and efficiency is a challenge. This research proposes a real-time human action recognition model that combines a deep learning model and a live video prediction and alert system, in order to predict falls, staggering and chest pain for residents in assisted living. Six thousand RGB video samples from the NTU RGB+D 60 dataset were selected to create a dataset with four classes: Falling, Staggering, Chest Pain, and Normal, with the Normal class comprising 40 daily activities. Transfer learning technique was applied to train four state-of-the-art HAR models on a GPU server, namely, UniFormerV2, TimeSformer, I3D, and SlowFast. Results of the four models are presented in this paper based on class-wise and macro performance metrics, inference efficiency, model complexity and computational costs. TimeSformer is proposed for developing the real-time human action recognition model, leveraging its leading macro F1 score (95.33%), recall (95.49%), and precision (95.19%) along with significantly higher inference throughput compared to the others. This research provides insights to enhance safety and health of the elderly and people with chronic illnesses in assisted living environments, fostering sustainable care, smarter communities and industry innovation.
- Abstract(参考訳): 高齢者と高齢者の生活環境における安全と幸福の確保が重要な課題である。
コンピュータビジョンは、人間の行動認識(HAR)技術を用いて、ビデオ監視を通じて健康リスクを予測する革新的で強力なアプローチを示す。
しかし,人間の行動のリアルタイム予測には高い性能と効率が課題である。
本研究では,深層学習モデルとライブ映像予測・警報システムを組み合わせたリアルタイム行動認識モデルを提案する。
NTU RGB+D 60データセットから60万のRGBビデオサンプルが選択され、フォーリング、シュガーディング、チェストペイン、ノーマルの4つのクラスからなるデータセットが作成された。
トランスファーラーニング技術は、GPUサーバ上の4つの最先端HARモデル、すなわちUniFormerV2、TimeSformer、I3D、SlowFastのトレーニングに応用された。
本論文では,クラスワイドおよびマクロパフォーマンス指標,推論効率,モデル複雑性,計算コストの4つのモデルについて述べる。
TimeSformerは、主要なマクロF1スコア(95.33%)、リコール(95.49%)、精度(95.19%)を生かし、推論のスループットを他と比べて大幅に高め、リアルタイムの人間行動認識モデルを開発するために提案されている。
本研究は, 生活環境における高齢者と慢性疾患の高齢者の安全と健康の向上, 持続可能なケア, よりスマートなコミュニティ, 産業革新の促進に関する知見を提供する。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRは、病気の進行予測、臨床試験設計、健康経済学と結果研究など、多くの計算医学の応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
論文 参考訳(メタデータ) (2024-04-18T16:50:46Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
そこで本研究では,仮想人間を含む合成データを用いて,実世界の映像を活用してモデルを事前学習するベンチマークを提案する。
次に、このデータに基づいて学習した表現を、下流行動認識ベンチマークの様々なセットに転送可能であるかを評価する。
私たちのアプローチは、以前のベースラインを最大5%上回ります。
論文 参考訳(メタデータ) (2023-11-10T18:38:14Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
本研究では,ERHにおける不規則な時系列に対処するため,COPERと呼ばれる新規患者状態パーセンシバーモデルを提案する。
ニューラル常微分方程式(ODE)は、COPERが通常の時系列を生成してPerceiverモデルに供給するのに役立ちます。
提案モデルの性能評価には,MIMIC-IIIデータセット上での院内死亡予測タスクを用いる。
論文 参考訳(メタデータ) (2022-08-05T14:32:57Z) - DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment
in COVID-19 Pandemic [1.027974860479791]
世界保健機関(WHO)は、公衆の場での新型コロナウイルスの感染拡大を最小限に抑えるため、ソーシャルディスタンシング(Social Distancing)を推奨している。
コンピュータビジョンとYOLOv4ベースのDeep Neural Networkモデルを開発した。
開発されたモデルは汎用的で正確な人物検出・追跡ソリューションであり、他の多くの分野に適用できる。
論文 参考訳(メタデータ) (2020-08-26T16:56:57Z) - A Machine Learning Early Warning System: Multicenter Validation in
Brazilian Hospitals [4.659599449441919]
臨床劣化の早期認識は、入院患者の死亡率と死亡率を減らすための主要なステップの1つである。
Intensive Care Unit, ICUと比較して, 病院病棟は注目度が低いため, プラットフォームがERHのストリームに接続されている場合, 危険な状況に対する意識が大幅に改善する可能性が示唆された。
機械学習の適用により、システムは患者のすべての履歴を考慮し、高いパフォーマンスの予測モデルを使用することで、インテリジェントな早期警告システムを実現することができる。
論文 参考訳(メタデータ) (2020-06-09T21:21:38Z) - Predicting Injectable Medication Adherence via a Smart Sharps Bin and
Machine Learning [0.9869634509510016]
当科では,次の予定薬の時間帯に薬剤を服用することに関して,患者の行動に関する予測を行う。
私たちはこれを、多くの機械学習モデルを活用することで実現しています。
提案した機械学習手法は、受信器動作特性曲線(ROC AUC)0.86の領域を示す非常に優れた予測性能を示した。
論文 参考訳(メタデータ) (2020-04-02T17:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。