LLMs as Planning Modelers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models
- URL: http://arxiv.org/abs/2503.18971v1
- Date: Sat, 22 Mar 2025 03:35:44 GMT
- Title: LLMs as Planning Modelers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models
- Authors: Marcus Tantakoun, Xiaodan Zhu, Christian Muise,
- Abstract summary: Large Language Models (LLMs) excel in various natural language tasks but often struggle with long-horizon planning problems.<n>This limitation has drawn interest in integrating neuro-symbolic approaches within the Automated Planning (AP) and Natural Language Processing (NLP) communities.
- Score: 24.230622369142193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) excel in various natural language tasks but often struggle with long-horizon planning problems requiring structured reasoning. This limitation has drawn interest in integrating neuro-symbolic approaches within the Automated Planning (AP) and Natural Language Processing (NLP) communities. However, identifying optimal AP deployment frameworks can be daunting. This paper aims to provide a timely survey of the current research with an in-depth analysis, positioning LLMs as tools for extracting and refining planning models to support reliable AP planners. By systematically reviewing the current state of research, we highlight methodologies, and identify critical challenges and future directions, hoping to contribute to the joint research on NLP and Automated Planning.
Related papers
- Self-Steering Language Models [113.96916935955842]
DisCIPL is a method for "self-steering" language models.
DisCIPL uses a Planner model to generate a task-specific inference program.
Our work opens up a design space of highly-parallelized Monte Carlo inference strategies.
arXiv Detail & Related papers (2025-04-09T17:54:22Z) - A Survey on Large Language Models for Automated Planning [15.767084100431115]
We critically investigate existing research on the use of Large Language Models in automated planning.<n>We illustrate that although LLMs are not well-suited to serve as standalone planners because of these limitations, they nonetheless present an enormous opportunity to enhance planning applications when combined with other approaches.
arXiv Detail & Related papers (2025-02-18T02:11:03Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.<n>It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.<n>Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability.
Comprehensive analyses are conducted for each direction, and further challenges in the field of research are discussed.
arXiv Detail & Related papers (2024-02-05T04:25:24Z) - On the Prospects of Incorporating Large Language Models (LLMs) in
Automated Planning and Scheduling (APS) [23.024862968785147]
This paper investigates eight categories based on the unique applications of LLMs in addressing various aspects of planning problems.
A critical insight resulting from our review is that the true potential of LLMs unfolds when they are integrated with traditional symbolic planners.
arXiv Detail & Related papers (2024-01-04T19:22:09Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.