論文の概要: Minimum Volume Conformal Sets for Multivariate Regression
- arxiv url: http://arxiv.org/abs/2503.19068v1
- Date: Mon, 24 Mar 2025 18:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:47.970680
- Title: Minimum Volume Conformal Sets for Multivariate Regression
- Title(参考訳): 多変量回帰のための最小体積整形集合
- Authors: Sacha Braun, Liviu Aolaritei, Michael I. Jordan, Francis Bach,
- Abstract要約: 等角予測は、有限サンプルの妥当性を持つ予測集合を構築するための原則化された枠組みを提供する。
本稿では,最小整合被覆集合を直接学習する新しい損失関数に基づく最適化駆動フレームワークを提案する。
提案手法は, 任意のノルム球によって定義された予測集合を最適化し, 単ノルムおよび多ノルムの定式化を含む。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: Conformal prediction provides a principled framework for constructing predictive sets with finite-sample validity. While much of the focus has been on univariate response variables, existing multivariate methods either impose rigid geometric assumptions or rely on flexible but computationally expensive approaches that do not explicitly optimize prediction set volume. We propose an optimization-driven framework based on a novel loss function that directly learns minimum-volume covering sets while ensuring valid coverage. This formulation naturally induces a new nonconformity score for conformal prediction, which adapts to the residual distribution and covariates. Our approach optimizes over prediction sets defined by arbitrary norm balls, including single and multi-norm formulations. Additionally, by jointly optimizing both the predictive model and predictive uncertainty, we obtain prediction sets that are tight, informative, and computationally efficient, as demonstrated in our experiments on real-world datasets.
- Abstract(参考訳): 等式予測は、有限サンプルの妥当性を持つ予測集合を構築するための原則化されたフレームワークを提供する。
単変量応答変数に焦点が当てられているが、既存の多変量法は厳密な幾何学的仮定を課すか、あるいは予測セットの容積を明示的に最適化しないフレキシブルだが計算的に高価なアプローチに頼っている。
本稿では,最小ボリュームのカバーセットを直接学習し,有効カバレッジを確保しつつ,新たな損失関数に基づく最適化駆動型フレームワークを提案する。
この定式化は、残留分布と共変に適応する共形予測のための新しい非整合スコアを自然に誘導する。
提案手法は、任意のノルム球によって定義された予測集合を最適化し、単ノルムおよび多ノルムの定式化を含む。
さらに,予測モデルと予測不確実性の両方を協調的に最適化することにより,実世界のデータセットで実証したように,厳密で情報的かつ計算的に効率的な予測セットが得られる。
関連論文リスト
- Optimal Transport-based Conformal Prediction [8.302146576157497]
コンフォーマル予測(CP)は、ブラックボックス学習モデルにおける不確実性のための原則化されたフレームワークである。
レンズを通して予測スコア関数を処理する新しいCPプロシージャを提案する。
次に,マルチ出力回帰とマルチクラス分類の定量化に本手法を適用した。
論文 参考訳(メタデータ) (2025-01-31T09:48:28Z) - Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
本稿では,複数の候補モデルから予測セットを作成するために使用されるモデルを選択する適応型共形予測フレームワークを提案する。
提案アルゴリズムは, 有効なカバレッジを維持しつつ, 全区間にわたる強い適応的後悔を達成できることが証明された。
論文 参考訳(メタデータ) (2024-11-06T05:57:28Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformal Prediction for Ensembles: Improving Efficiency via Score-Based Aggregation [18.928543069018865]
等角予測は分布仮定を避ける一つの方法である。
しかし、予測領域をマージすることで、コンフォメーションスコアに存在する構造が犠牲になり、保守性はさらに低下する。
そこで本研究では,新しいフレームワークを分類と予測列最適化の両方で効果的に活用できることを述べる。
論文 参考訳(メタデータ) (2024-05-25T14:11:01Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
コンフォーマル化補正ニューラル変分推論(CANVI)を提案する。
CANVIは各候補に基づいて共形予測器を構築し、予測効率と呼ばれる計量を用いて予測器を比較し、最も効率的な予測器を返す。
我々は,CANVIが生成する領域の予測効率の低い境界を証明し,その近似に基づいて,後部近似の品質と予測領域の予測効率の関係について検討する。
論文 参考訳(メタデータ) (2023-05-23T17:24:04Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Universal Prediction Band via Semi-Definite Programming [4.401255328572734]
不確実性定量化のための非パラメトリックヘテロスケダスティック予測バンドを構築する方法を提案する。
データ適応予測帯域は、最小分布仮定で普遍的に適用できる。
論文 参考訳(メタデータ) (2021-03-31T16:30:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。