論文の概要: Universal Architectures for the Learning of Polyhedral Norms and Convex Regularization Functionals
- arxiv url: http://arxiv.org/abs/2503.19190v1
- Date: Mon, 24 Mar 2025 22:32:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:04.334612
- Title: Universal Architectures for the Learning of Polyhedral Norms and Convex Regularization Functionals
- Title(参考訳): 多面ノルムと凸正規化関数の学習のための普遍的アーキテクチャ
- Authors: Michael Unser, Stanislas Ducotterd,
- Abstract要約: 本稿では,限られたデータから画像の再構成を導くための凸正規化器の学習課題について述べる。
再構成を振幅同変とすることで、許容関数のクラスを狭めます。
このような関数は多面体ノルムの助けを借りて任意の精度で近似できることを示す。
- 参考スコア(独自算出の注目度): 16.78532039510369
- License:
- Abstract: This paper addresses the task of learning convex regularizers to guide the reconstruction of images from limited data. By imposing that the reconstruction be amplitude-equivariant, we narrow down the class of admissible functionals to those that can be expressed as a power of a seminorm. We then show that such functionals can be approximated to arbitrary precision with the help of polyhedral norms. In particular, we identify two dual parameterizations of such systems: (i) a synthesis form with an $\ell_1$-penalty that involves some learnable dictionary; and (ii) an analysis form with an $\ell_\infty$-penalty that involves a trainable regularization operator. After having provided geometric insights and proved that the two forms are universal, we propose an implementation that relies on a specific architecture (tight frame with a weighted $\ell_1$ penalty) that is easy to train. We illustrate its use for denoising and the reconstruction of biomedical images. We find that the proposed framework outperforms the sparsity-based methods of compressed sensing, while it offers essentially the same convergence and robustness guarantees.
- Abstract(参考訳): 本稿では,限られたデータから画像の再構成を導くための凸正規化器の学習課題について述べる。
再構成を振幅同変であると仮定することにより、半ノルムの力として表せるものに許容関数のクラスを絞り込む。
すると、そのような函数は多面体ノルムの助けを借りて任意の精度で近似できることを示す。
特に、そのようなシステムの2つの双対パラメータ化を同定する。
(i)学習可能な辞書を含む$\ell_1$-penaltyの合成形式
(ii)訓練可能な正規化演算子を含む$\ell_\infty$-penaltyを持つ解析形式。
幾何学的洞察を与え、2つの形式が普遍的であることを証明した後、訓練が容易な特定のアーキテクチャ(重み付き$\ell_1$のペナルティを持つ8フレーム)に依存する実装を提案する。
生体医用画像のデノベーションと再構成における使用法について解説する。
提案手法は, 圧縮センシングの疎性に基づく手法よりも優れており, 基本的に同じ収束性および堅牢性保証を提供する。
関連論文リスト
- Metric Convolutions: A Unifying Theory to Adaptive Convolutions [3.481985817302898]
メトリック畳み込みは、画像処理とディープラーニングにおける標準的な畳み込みを置き換える。
パラメータを少なくし、より良い一般化を提供する。
提案手法は,標準的な分類タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2024-06-08T08:41:12Z) - A Canonicalization Perspective on Invariant and Equivariant Learning [54.44572887716977]
フレームの設計について,本質的で完全な視点を提供する正準化の視点を導入する。
フレームと標準形式の間には固有の関係があることが示される。
既存の手法よりも厳密な固有ベクトルのための新しいフレームを設計する。
論文 参考訳(メタデータ) (2024-05-28T17:22:15Z) - Algebraic Positional Encodings [7.0975366862235445]
本稿では,トランスフォーマー型モデルに対して,既存のアドホックなアプローチの欠点に対処する新たな位置符号化方式を提案する。
我々は,本手法の実用性を示す一連の実験を行った。
結果は、現在の最先端に匹敵するパフォーマンスを示唆している。
論文 参考訳(メタデータ) (2023-12-26T13:17:25Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - Bilinear Classes: A Structural Framework for Provable Generalization in
RL [119.42509700822484]
Bilinear Classesは強化学習の一般化を可能にする新しい構造フレームワークである。
このフレームワークは、サンプルの複雑さが達成可能な、ほとんどすべての既存のモデルを取り込んでいる。
我々の主な成果は、双線形クラスのためのサンプル複雑性を持つRLアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-19T16:34:20Z) - Lattice Representation Learning [6.427169570069738]
ユークリッド空間に埋め込まれた格子を利用する離散表現を学習するための理論とアルゴリズムを導入する。
格子表現は興味深い性質の組み合わせを持つ:a) 格子量子化を用いて明示的に計算できるが、導入したアイデアを使って効率的に学習することができる。
この記事では、トレーニングや推論時間に使用される式をリンクする新しい数学的結果や、2つの一般的なデータセットに対する実験的な検証など、最初の2つの特性を探索し、活用するための基盤の整備に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-24T16:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。