Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing
- URL: http://arxiv.org/abs/2503.19262v1
- Date: Tue, 25 Mar 2025 01:55:39 GMT
- Title: Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing
- Authors: Ruiyi Wang, Yushuo Zheng, Zicheng Zhang, Chunyi Li, Shuaicheng Liu, Guangtao Zhai, Xiaohong Liu,
- Abstract summary: We introduce a novel hazing-dehazing pipeline consisting of a Realistic Hazy Image Generation framework (HazeGen) and a Diffusion-based Dehazing framework (DiffDehaze)<n>HazeGen harnesses robust generative diffusion priors of real-world hazy images embedded in a pre-trained text-to-image diffusion model.<n>By employing specialized hybrid training and blended sampling strategies, HazeGen produces realistic and diverse hazy images as high-quality training data for DiffDehaze.
- Score: 59.43187521828543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing real-world image dehazing methods primarily attempt to fine-tune pre-trained models or adapt their inference procedures, thus heavily relying on the pre-trained models and associated training data. Moreover, restoring heavily distorted information under dense haze requires generative diffusion models, whose potential in dehazing remains underutilized partly due to their lengthy sampling processes. To address these limitations, we introduce a novel hazing-dehazing pipeline consisting of a Realistic Hazy Image Generation framework (HazeGen) and a Diffusion-based Dehazing framework (DiffDehaze). Specifically, HazeGen harnesses robust generative diffusion priors of real-world hazy images embedded in a pre-trained text-to-image diffusion model. By employing specialized hybrid training and blended sampling strategies, HazeGen produces realistic and diverse hazy images as high-quality training data for DiffDehaze. To alleviate the inefficiency and fidelity concerns associated with diffusion-based methods, DiffDehaze adopts an Accelerated Fidelity-Preserving Sampling process (AccSamp). The core of AccSamp is the Tiled Statistical Alignment Operation (AlignOp), which can provide a clean and faithful dehazing estimate within a small fraction of sampling steps to reduce complexity and enable effective fidelity guidance. Extensive experiments demonstrate the superior dehazing performance and visual quality of our approach over existing methods. The code is available at https://github.com/ruiyi-w/Learning-Hazing-to-Dehazing.
Related papers
- Exploiting Diffusion Prior for Real-World Image Dehazing with Unpaired Training [11.902218695900217]
Unpaired training is one of the most effective paradigms for real scene dehazing by learning from hazy and clear images.<n>Inspired by the strong generative capabilities of diffusion models in producing both hazy and clear images, we exploit diffusion prior for real-world image dehazing.<n>We introduce a new perspective for adequately leveraging the representation ability of diffusion models by removing degradation in image and text modalities.
arXiv Detail & Related papers (2025-03-19T09:13:06Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - HazeCLIP: Towards Language Guided Real-World Image Dehazing [62.4454483961341]
Existing methods have achieved remarkable performance in image dehazing, particularly on synthetic datasets.<n>This paper introduces HazeCLIP, a language-guided adaptation framework designed to enhance the real-world performance of pre-trained dehazing networks.
arXiv Detail & Related papers (2024-07-18T17:18:25Z) - RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing [32.16602874389847]
Haze severely degrades the visual quality of remote sensing images.
We propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff.
Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff over state-of-the-art methods.
arXiv Detail & Related papers (2024-05-15T04:22:27Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
arXiv Detail & Related papers (2023-08-21T06:50:44Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Advanced Multiple Linear Regression Based Dark Channel Prior Applied on
Dehazing Image and Generating Synthetic Haze [0.6875312133832078]
Authors propose a multiple linear regression haze removal model based on a widely adopted dehazing algorithm named Dark Channel Prior.
To increase object detection accuracy in the hazy environment, the authors present an algorithm to build a synthetic hazy COCO training dataset.
arXiv Detail & Related papers (2021-03-12T03:32:08Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
We propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing.
Our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts.
Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images.
arXiv Detail & Related papers (2020-01-20T04:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.