Advanced Multiple Linear Regression Based Dark Channel Prior Applied on
Dehazing Image and Generating Synthetic Haze
- URL: http://arxiv.org/abs/2103.07065v1
- Date: Fri, 12 Mar 2021 03:32:08 GMT
- Title: Advanced Multiple Linear Regression Based Dark Channel Prior Applied on
Dehazing Image and Generating Synthetic Haze
- Authors: Binghan Li, Yindong Hua, Mi Lu
- Abstract summary: Authors propose a multiple linear regression haze removal model based on a widely adopted dehazing algorithm named Dark Channel Prior.
To increase object detection accuracy in the hazy environment, the authors present an algorithm to build a synthetic hazy COCO training dataset.
- Score: 0.6875312133832078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Haze removal is an extremely challenging task, and object detection in the
hazy environment has recently gained much attention due to the popularity of
autonomous driving and traffic surveillance. In this work, the authors propose
a multiple linear regression haze removal model based on a widely adopted
dehazing algorithm named Dark Channel Prior. Training this model with a
synthetic hazy dataset, the proposed model can reduce the unanticipated
deviations generated from the rough estimations of transmission map and
atmospheric light in Dark Channel Prior. To increase object detection accuracy
in the hazy environment, the authors further present an algorithm to build a
synthetic hazy COCO training dataset by generating the artificial haze to the
MS COCO training dataset. The experimental results demonstrate that the
proposed model obtains higher image quality and shares more similarity with
ground truth images than most conventional pixel-based dehazing algorithms and
neural network based haze-removal models. The authors also evaluate the mean
average precision of Mask R-CNN when training the network with synthetic hazy
COCO training dataset and preprocessing test hazy dataset by removing the haze
with the proposed dehazing model. It turns out that both approaches can
increase the object detection accuracy significantly and outperform most
existing object detection models over hazy images.
Related papers
- Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
arXiv Detail & Related papers (2024-05-02T09:21:10Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
A novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches.
Results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2022-09-13T11:56:03Z) - Model-Based Single Image Deep Dehazing [20.39952114471173]
A novel single image dehazing algorithm is introduced by fusing model-based and data-driven approaches.
Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2021-11-22T01:57:51Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
We propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing.
Our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts.
Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images.
arXiv Detail & Related papers (2020-01-20T04:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.