論文の概要: Node Masking: Making Graph Neural Networks Generalize and Scale Better
- arxiv url: http://arxiv.org/abs/2001.07524v4
- Date: Sun, 16 May 2021 19:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 09:51:22.506262
- Title: Node Masking: Making Graph Neural Networks Generalize and Scale Better
- Title(参考訳): Node Masking: グラフニューラルネットワークの一般化とスケール向上
- Authors: Pushkar Mishra, Aleksandra Piktus, Gerard Goossen, Fabrizio Silvestri
- Abstract要約: グラフニューラルネットワーク(GNN)は近年,多くの関心を集めている。
本稿では,芸術空間のGNNの状態によって実行される操作をよりよく可視化するために,いくつかの理論ツールを利用する。
私たちはNode Maskingというシンプルなコンセプトを導入しました。
- 参考スコア(独自算出の注目度): 71.51292866945471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have received a lot of interest in the recent
times. From the early spectral architectures that could only operate on
undirected graphs per a transductive learning paradigm to the current state of
the art spatial ones that can apply inductively to arbitrary graphs, GNNs have
seen significant contributions from the research community. In this paper, we
utilize some theoretical tools to better visualize the operations performed by
state of the art spatial GNNs. We analyze the inner workings of these
architectures and introduce a simple concept, Node Masking, that allows them to
generalize and scale better. To empirically validate the concept, we perform
several experiments on some widely-used datasets for node classification in
both the transductive and inductive settings, hence laying down strong
benchmarks for future research.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は近年,多くの関心を集めている。
トランスダクティブ学習パラダイム当たりの非方向性グラフのみを操作できる初期のスペクトルアーキテクチャから、任意のグラフに誘導的に適用可能なアート空間グラフの現在の状態に至るまで、GNNは研究コミュニティから多大な貢献をしている。
本稿では,芸術空間のGNNが行う操作をよりよく視覚化するために,いくつかの理論ツールを利用する。
これらのアーキテクチャの内部構造を分析し、Node Maskingというシンプルな概念を導入し、より一般化し、スケールできるようにする。
この概念を実証的に検証するために,我々は,帰納的および帰納的両方のノード分類に広く用いられているデータセットについて,いくつかの実験を行った。
関連論文リスト
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
本稿では,グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIを紹介する。
標準機械学習(ML)モデルは競争力があり、最先端のGNNモデルよりも優れています。
ProXIによる従来のGNNの拡張はリンク予測性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:38Z) - Improved Image Classification with Manifold Neural Networks [13.02854405679453]
グラフニューラルネットワーク(GNN)は、さまざまな学習タスクで人気を集めている。
本稿では,一般データ表現におけるGNNの可能性,特に画像領域における検討を行う。
分類タスクにおいて、画像ラベルに対応するノードラベルを予測するためにGNNを訓練し、GNNの収束を利用してGNNの一般化を分析する。
論文 参考訳(メタデータ) (2024-09-19T19:55:33Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
Benchmark Study [100.27567794045045]
ディープグラフニューラルネットワーク(GNN)のトレーニングは、非常に難しい。
我々は、深層GNNの「トリック」を評価するための最初の公正かつ再現可能なベンチマークを示す。
論文 参考訳(メタデータ) (2021-08-24T05:00:37Z) - Transfer Learning of Graph Neural Networks with Ego-graph Information
Maximization [41.867290324754094]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションにおいて優れたパフォーマンスを実現しているが、大規模グラフのトレーニングには費用がかかる。
本研究では,GNNの伝達学習のための理論的基盤と実用的有用な枠組みを確立する。
論文 参考訳(メタデータ) (2020-09-11T02:31:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。