論文の概要: VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
- arxiv url: http://arxiv.org/abs/2503.19530v3
- Date: Thu, 14 Aug 2025 10:49:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 13:42:23.056605
- Title: VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
- Title(参考訳): VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
- Authors: Suhas G Hegde, Shilpy Kaur, Aruna Tiwari,
- Abstract要約: 本稿では,VectorFitを紹介する。VectorFitは,その特異ベクトルとバイアスを適応的にトレーニングすることで,$W$に埋め込まれた既存の知識を効率的に活用する。
この方法では、$W$の構造的および変換的性質を利用することで、完全な微調整に匹敵する高階インクリメンタルウェイト行列が$Delta W$となることが示される。
- 参考スコア(独自算出の注目度): 0.8875650122536799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popular PEFT methods reduce trainable parameter count for fine-tuning by parameterizing new low-rank or sparse trainable weights in parallel to the frozen pre-trained weights $W$. However, these weights are trained from scratch, and there exists a performance gap between these methods and full fine-tuning, especially in low-budget settings. We introduce VectorFit, a new way of parameterization that efficiently utilizes the existing knowledge embedded in $W$ by adaptively training their singular vectors and biases. We show that utilizing the structural and transformational properties of $W$ in this way can lead to high-rank incremental weight matrices $\Delta W$, comparable to that of full fine-tuning. VectorFit delivers superior results with 9$\boldsymbol\times$ fewer trainable parameters than the leading PEFT methods. Through comprehensive experiments across 19 datasets covering a wide range of language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we demonstrate that VectorFit surpasses baselines in terms of performance as a function of parameter-efficiency.
- Abstract(参考訳): PEFT法は,冷凍前トレーニング重量のW$と並行して,新しい低ランクないしスパーストレーニング重量をパラメータ化することにより,微調整のためのトレーニング可能なパラメータ数を削減している。
しかしながら、これらの重みはスクラッチからトレーニングされており、特に低予算環境では、これらの方法と完全な微調整の間にパフォーマンスのギャップがある。
本稿では,VectorFitを紹介する。VectorFitは,その特異ベクトルとバイアスを適応的にトレーニングすることで,$W$に埋め込まれた既存の知識を効率的に活用する。
この方法では、$W$の構造的および変換的性質を利用することで、高階インクリメンタルウェイト行列が$\Delta W$となる。
VectorFitは9$\boldsymbol\times$トレーニング可能なパラメータを主要なPEFTメソッドよりも少なくする。
自然言語理解・生成,質問応答,画像分類,画像生成など,幅広い言語・視覚タスクをカバーする19のデータセットを対象とした総合的な実験を通じて,パラメータ効率の関数として,VectorFitが性能の基準線を超えることを実証した。
関連論文リスト
- GenFT: A Generative Parameter-Efficient Fine-Tuning Method for Pretrained Foundation Models [23.85784506399565]
Generative Fine-Tuning (GenFT) は、効率的な$Delta W$トレーニングのために$Delta W$から構造化された、転送可能な情報を抽出する新しい方法である。
VTAB-1K、FGVC、GLUEベンチマークの実験により、GenFTは最先端のPEFT法より優れていることが示された。
論文 参考訳(メタデータ) (2025-05-21T08:33:26Z) - Transformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models [32.68721299475496]
Low-Rank Adaptation (LoRA)とその変種は、その有効性から大きな注目を集めている。
本稿では,2種類の適応,すなわち変換と残留適応を組み合わせた新しいPEFT法を提案する。
主観駆動・制御可能ジェネレーションにおける微調整安定拡散モデルの実験を行った。
論文 参考訳(メタデータ) (2025-01-15T11:10:37Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
微調整された事前学習モデルは、しばしば最先端のパフォーマンスをもたらすが、全てのパラメータを更新する際に計算コストがかかる。
本稿では,軽量ニューラルネットワークを用いた非線形PEFT手法NEATを提案し,事前学習した重みの非線形変換を学習する。
理論解析により, NEATは等価な表現性を維持しつつ, LoRA よりも高い効率を達成することが示された。
論文 参考訳(メタデータ) (2024-10-02T17:29:23Z) - SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values [12.137869917556415]
大規模事前学習モデル(LPM)は、多種多様な自然言語処理やコンピュータビジョンタスクにおいて例外的な性能を示した。
これらのモデルを完全に微調整すると、特にリソース制約のある環境では、大きなメモリの問題が発生します。
本稿では,臨界特異値をトレーニング可能なパラメータとして用いた低ランク行列に対する特異値分解(SVD)を利用した新しいPEFT手法であるSVFitを提案する。
論文 参考訳(メタデータ) (2024-09-09T08:44:53Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models [5.981614673186146]
私たちは小説を提示する。
-PEFT(Adaptive Freezing of Low Rank Adaptation)法
具体的には、トレーニング可能な低ランク行列の平行経路、すなわち、ダウンプロジェクションとアッププロジェクション行列を加え、それぞれに特徴変換ベクトルが続く。
実験結果から,GLUEベンチマークで評価した結果,平均値0.85%以上の改善を達成できることが確認された。
論文 参考訳(メタデータ) (2024-03-20T03:07:50Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
我々はSparse Increment Fine-Tuning (SIFT) という勾配に基づくスパース微調整アルゴリズムを提案する。
GLUE Benchmark や Instruction-tuning などのタスクで有効性を検証する。
論文 参考訳(メタデータ) (2023-12-19T06:06:30Z) - WeGeFT: Weight-Generative Fine-Tuning for Multi-Faceted Efficient Adaptation of Large Models [8.481707805559589]
WeGeFT(Weight-Generative Fine-Tuning)は、トレーニング済みの重みから直接微調整重みを生成することを学習する新しい手法である。
この設計は、パラメータ、表現、計算、メモリの多面的効率を実現し、LoRAとその変種の性能を維持したり、超えたりしている。
論文 参考訳(メタデータ) (2023-12-01T16:33:57Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z) - Towards Efficient Visual Adaption via Structural Re-parameterization [76.57083043547296]
本稿では,RepAdapterと呼ばれる巨大ビジョンモデルに対して,パラメータ効率と計算親和性を考慮したアダプタを提案する。
RepAdapterは、VTAB-1k上で25%のトレーニング時間、20%のGPUメモリ、94.6%のストレージコストを節約できる。
論文 参考訳(メタデータ) (2023-02-16T06:14:15Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
私たちはaを提案します。
Sparse- efficient Sparse Training (PST) は、スパース・アウェア・トレーニング中にトレーニング可能なパラメータの数を減少させる手法である。
多様なネットワーク(BERT、RoBERTa、GPT-2)を用いた実験では、PSTは従来のスパーシリティ法よりも同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-05-23T02:43:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。