Scene-agnostic Pose Regression for Visual Localization
- URL: http://arxiv.org/abs/2503.19543v1
- Date: Tue, 25 Mar 2025 10:58:40 GMT
- Title: Scene-agnostic Pose Regression for Visual Localization
- Authors: Junwei Zheng, Ruiping Liu, Yufan Chen, Zhenfang Chen, Kailun Yang, Jiaming Zhang, Rainer Stiefelhagen,
- Abstract summary: We introduce a new task, Scene-agnostic Pose Regression (SPR), which can achieve accurate pose regression in a flexible way.<n>In the unknown scenes of both 360SPR and 360Loc datasets, our method consistently outperforms APR, RPR and VO.
- Score: 38.653251516665804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Absolute Pose Regression (APR) predicts 6D camera poses but lacks the adaptability to unknown environments without retraining, while Relative Pose Regression (RPR) generalizes better yet requires a large image retrieval database. Visual Odometry (VO) generalizes well in unseen environments but suffers from accumulated error in open trajectories. To address this dilemma, we introduce a new task, Scene-agnostic Pose Regression (SPR), which can achieve accurate pose regression in a flexible way while eliminating the need for retraining or databases. To benchmark SPR, we created a large-scale dataset, 360SPR, with over 200K photorealistic panoramas, 3.6M pinhole images and camera poses in 270 scenes at three different sensor heights. Furthermore, a SPR-Mamba model is initially proposed to address SPR in a dual-branch manner. Extensive experiments and studies demonstrate the effectiveness of our SPR paradigm, dataset, and model. In the unknown scenes of both 360SPR and 360Loc datasets, our method consistently outperforms APR, RPR and VO. The dataset and code are available at https://junweizheng93.github.io/publications/SPR/SPR.html.
Related papers
- GS-CPR: Efficient Camera Pose Refinement via 3D Gaussian Splatting [25.780452115246245]
We propose a novel test-time camera pose refinement (CPR) framework, GS-CPR.
This framework enhances the localization accuracy of state-of-the-art absolute pose regression and scene coordinate regression methods.
The 3DGS model renders high-quality synthetic images and depth maps to facilitate the establishment of 2D-3D correspondences.
arXiv Detail & Related papers (2024-08-20T17:58:23Z) - SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPose is a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios.
It achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed.
It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
arXiv Detail & Related papers (2024-07-11T05:46:35Z) - Map-Relative Pose Regression for Visual Re-Localization [20.89982939633994]
We present a new approach to pose regression, map-relative pose regression (marepo)
We condition the pose regressor on a scene-specific map representation such that its pose predictions are relative to the scene map.
Our approach outperforms previous pose regression methods by far on two public datasets, indoor and outdoor.
arXiv Detail & Related papers (2024-04-15T15:53:23Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape
Prediction [77.89935657608926]
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images.
PF-LRM simultaneously estimates the relative camera poses in 1.3 seconds on a single A100 GPU.
arXiv Detail & Related papers (2023-11-20T18:57:55Z) - KS-APR: Keyframe Selection for Robust Absolute Pose Regression [2.541264438930729]
Markerless Mobile Augmented Reality (AR) aims to anchor digital content in the physical world without using specific 2D or 3D objects.
End-to-end machine learning solutions infer the device's pose from a single monocular image.
APR methods tend to yield significant inaccuracies for input images that are too distant from the training set.
This paper introduces KS-APR, a pipeline that assesses the reliability of an estimated pose with minimal overhead.
arXiv Detail & Related papers (2023-08-10T09:32:20Z) - Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot,
Generalizable Approach using RGB Images [60.0898989456276]
We present a new framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images.
To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a self-supervised pre-trained ViT to learn robust feature representations.
Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting.
arXiv Detail & Related papers (2023-06-13T07:45:42Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - Learning to Localize in Unseen Scenes with Relative Pose Regressors [5.672132510411465]
Relative pose regressors (RPRs) localize a camera by estimating its relative translation and rotation to a pose-labelled reference.
In practice, however, the performance of RPRs is significantly degraded in unseen scenes.
We implement aggregation with concatenation, projection, and attention operations (Transformers) and learn to regress the relative pose parameters from the resulting latent codes.
Compared to state-of-the-art RPRs, our model is shown to localize significantly better in unseen environments, across both indoor and outdoor benchmarks, while maintaining competitive performance in seen scenes.
arXiv Detail & Related papers (2023-03-05T17:12:50Z) - Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose
Regression and Odometry-aided Absolute Pose Regression [6.557612703872671]
Visual-inertial localization is a key problem in computer vision and robotics applications such as virtual reality, self-driving cars, and aerial vehicles.
In this work, we conduct a benchmark to evaluate deep multimodal fusion based on pose graph optimization and attention networks.
We show improvements for the APR-RPR task and for the RPR-RPR task for aerial vehicles and handheld devices.
arXiv Detail & Related papers (2022-08-01T15:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.