論文の概要: Noise Resilient Over-The-Air Federated Learning In Heterogeneous Wireless Networks
- arxiv url: http://arxiv.org/abs/2503.19549v1
- Date: Tue, 25 Mar 2025 11:04:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:40.593476
- Title: Noise Resilient Over-The-Air Federated Learning In Heterogeneous Wireless Networks
- Title(参考訳): 不均一無線ネットワークにおける空気の耐雑音性
- Authors: Zubair Shaban, Nazreen Shah, Ranjitha Prasad,
- Abstract要約: 6G無線ネットワークでは、人工知能(AI)駆動のアプリケーションはフェデレートラーニング(FL)の採用を要求する。
従来のOTA-FL技術は、サーバにおけるAWGN(Additive White Gaussian Noise)と、エッジデバイスにおけるデータおよびシステム不均一性の両面から影響を受けている。
我々は,これらの課題に共同で取り組むために,新しいノイズ耐性オーバーザエアフェデレートラーニング(NoROTA-FL)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.2530496464901106
- License:
- Abstract: In 6G wireless networks, Artificial Intelligence (AI)-driven applications demand the adoption of Federated Learning (FL) to enable efficient and privacy-preserving model training across distributed devices. Over-The-Air Federated Learning (OTA-FL) exploits the superposition property of multiple access channels, allowing edge users in 6G networks to efficiently share spectral resources and perform low-latency global model aggregation. However, these advantages come with challenges, as traditional OTA-FL techniques suffer due to the joint effects of Additive White Gaussian Noise (AWGN) at the server, fading, and both data and system heterogeneity at the participating edge devices. In this work, we propose the novel Noise Resilient Over-the-Air Federated Learning (NoROTA-FL) framework to jointly tackle these challenges in federated wireless networks. In NoROTA-FL, the local optimization problems find controlled inexact solutions, which manifests as an additional proximal constraint at the clients. This approach provides robustness against straggler-induced partial work, heterogeneity, noise, and fading. From a theoretical perspective, we leverage the zeroth- and first-order inexactness and establish convergence guarantees for non-convex optimization problems in the presence of heterogeneous data and varying system capabilities. Experimentally, we validate NoROTA-FL on real-world datasets, including FEMNIST, CIFAR10, and CIFAR100, demonstrating its robustness in noisy and heterogeneous environments. Compared to state-of-the-art baselines such as COTAF and FedProx, NoROTA-FL achieves significantly more stable convergence and higher accuracy, particularly in the presence of stragglers.
- Abstract(参考訳): 6G無線ネットワークでは、人工知能(AI)駆動のアプリケーションがフェデレートラーニング(FL)を採用し、分散デバイス間の効率的なプライバシ保護モデルトレーニングを実現する。
OTA-FL(Over-The Air Federated Learning)は、複数のアクセスチャネルの重ね合わせ特性を利用して、6Gネットワークのエッジユーザがスペクトルリソースを効率的に共有し、低レイテンシのグローバルモデルアグリゲーションを実行する。
しかし、これらの利点は、従来のOTA-FL技術がサーバにおける付加的なホワイトガウシアンノイズ(AWGN)と、エッジデバイスにおけるデータおよびシステム不均一性の両方の影響で悩まされているため、課題を生んでいる。
本研究では,無線ネットワークにおけるこれらの課題に共同で取り組むための,新しいノイズレジリエント・オーバー・ザ・エア・フェデレート・ラーニング(NoROTA-FL)フレームワークを提案する。
NoROTA-FLでは、局所最適化問題は制御不能な解を見つけ出し、これはクライアントの近位制約として現れる。
このアプローチは、ストラグラーによる部分的な作業、不均一性、ノイズ、およびフェードに対する堅牢性を提供する。
理論的な観点からは、ゼロ階と1階の不完全性を活用し、不均一なデータと様々なシステム機能の存在下での非凸最適化問題に対する収束保証を確立する。
実験により,FEMNIST,CIFAR10,CIFAR100を含む実世界のデータセット上でのNOROTA-FLの有効性を実証した。
COTAFやFedProxのような最先端のベースラインと比較して、NoROTA-FLは、特にストラグラーの存在下で、はるかに安定な収束と高い精度を達成する。
関連論文リスト
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework [19.381425127772054]
Federated Learning(FL)は、エッジデバイスがローカルなトレーニングデータを維持することができる分散機械学習フレームワークである。
本稿では,分散化された動的電力制御により差分プライバシ(DP)を改善するOTA-FLの無線物理層(PHY)設計を提案する。
この適応は、異なる学習アルゴリズム間で設計の柔軟性と有効性を示しながら、プライバシに強く重点を置いています。
論文 参考訳(メタデータ) (2024-12-05T18:27:09Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - UAV-assisted Unbiased Hierarchical Federated Learning: Performance and Convergence Analysis [16.963596661873954]
HFL(Hierarchical Federated Learning)は、エッジデバイス間で学習を分散し、グローバルインテリジェンスに到達するための重要なパラダイムである。
HFLでは、各エッジデバイスが各データを使用してローカルモデルをトレーニングし、更新されたモデルパラメータをエッジサーバに送信し、ローカルアグリゲーションを行う。
本稿では無人航空機(UAV)支援無線ネットワークのための非バイアスHFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-05T06:23:01Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient
Federated Learning [11.093360539563657]
フェデレートラーニング(FL)は、機械学習トレーニングにおけるプライバシリークのリスクに対処するソリューションとして登場した。
我々は,モデル収束を保証しつつ,FLのエネルギー効率を最適化するFedGPOを提案する。
我々の実験では、FedGPOはモデル収束時間を2.4倍改善し、ベースライン設定の3.6倍のエネルギー効率を達成する。
論文 参考訳(メタデータ) (2022-11-30T01:22:57Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。