論文の概要: Post-Hoc Calibrated Anomaly Detection
- arxiv url: http://arxiv.org/abs/2503.19577v1
- Date: Tue, 25 Mar 2025 11:55:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:31.818027
- Title: Post-Hoc Calibrated Anomaly Detection
- Title(参考訳): ホック後校正異常検出
- Authors: Sean Gloumeau,
- Abstract要約: 教師なし異常検出では 教師付き二分分類のパラダイムが改善しました
外乱露光と呼ばれるプロセスにおける異常データとして、トレーニングセットに補助的外部データを含める。
ポストホックキャリブレーションは、ランダム合成スペクトルデータを用いて、キャリブレーションセット内の異常データとしてより効果的であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep unsupervised anomaly detection has seen improvements in a supervised binary classification paradigm in which auxiliary external data is included in the training set as anomalous data in a process referred to as outlier exposure, which opens the possibility of exploring the efficacy of post-hoc calibration for anomaly detection and localization. Post-hoc Platt scaling and Beta calibration are found to improve results with gradient-based input perturbation, as well as post-hoc training with a strictly proper loss of a base model initially trained on an unsupervised loss. Post-hoc calibration is also found at times to be more effective using random synthesized spectral data as labeled anomalous data in the calibration set, suggesting that outlier exposure is superior only for initial training.
- Abstract(参考訳): 深層非教師付き異常検出では、異常検出と局所化のためのポストホック校正の有効性を探求するプロセスにおいて、外部データを異常データとしてトレーニングセットに含めるような教師付きバイナリ分類パラダイムが改善されている。
ポストホックプラッツスケーリングとベータキャリブレーションは、勾配に基づく入力摂動による結果の改善と、教師なしの損失に基づいて訓練されたベースモデルの厳密な損失を伴うポストホックトレーニングに寄与する。
ポストホックキャリブレーションは、キャリブレーションセット内の異常なラベル付きデータとしてランダムな合成スペクトルデータを用いてより効果的であることも見出され、初期訓練に限ってはアウトラヤ露光が優れていることが示唆された。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Learning for Transductive Threshold Calibration in Open-World Recognition [83.35320675679122]
グラフニューラルネットワークを用いた高剛性と適応性を有するトランスダクティブしきい値キャリブレーション法であるOpenGCNを導入する。
オープンワールドの視覚認識ベンチマークにおける実験は、オープンワールドのしきい値校正のための既存のポストホック校正方法よりもOpenGCNの方が優れていることを検証する。
論文 参考訳(メタデータ) (2023-05-19T23:52:48Z) - Positive Difference Distribution for Image Outlier Detection using
Normalizing Flows and Contrastive Data [2.9005223064604078]
例えば、標準的なログライクリーフトレーニングによる正規化フローは、外れ値スコアとして不十分である。
本稿では,外乱検出のための非ラベル付き補助データセットと確率的外乱スコアを提案する。
これは、分布内と対照的な特徴密度の間の正規化正の差を学ぶことと等価であることを示す。
論文 参考訳(メタデータ) (2022-08-30T07:00:46Z) - Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection [27.15951068292889]
本稿では,異常検出のための一級分類を提案する。
データの正規性の汚染耐性、異常なインフォームド学習を実現する。
我々のモデルは16人の最先端の競争者に対して大幅な改善を達成している。
論文 参考訳(メタデータ) (2022-07-25T13:43:13Z) - Investigation of Different Calibration Methods for Deep Speaker
Embedding based Verification Systems [66.61691401921296]
本稿では, ディープスピーカ埋込抽出器のスコアキャリブレーション法について検討する。
この研究のさらなる焦点は、スコア正規化がシステムの校正性能に与える影響を推定することである。
論文 参考訳(メタデータ) (2022-03-28T21:22:22Z) - Monte Carlo EM for Deep Time Series Anomaly Detection [6.312089019297173]
時系列データは、しばしば外れ値や他の種類の異常によって破壊される。
異常検出と予測への最近のアプローチは、トレーニングデータの異常の割合が無視できるほど小さいと仮定している。
本稿では,既存の時系列モデルを拡張して,トレーニングデータの異常を明示的に考慮する手法を提案する。
論文 参考訳(メタデータ) (2021-12-29T07:52:36Z) - Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
Data Contamination [4.547161155818913]
正規度校正オートエンコーダ(NCAE)は、汚染されたデータセットの異常検出性能を高めることができる。
NCAEは、エントロピーの低い潜在空間から高信頼な正規サンプルを逆向きに生成する。
論文 参考訳(メタデータ) (2021-10-28T00:23:01Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。