QuCOOP: A Versatile Framework for Solving Composite and Binary-Parametrised Problems on Quantum Annealers
- URL: http://arxiv.org/abs/2503.19718v1
- Date: Tue, 25 Mar 2025 14:45:19 GMT
- Title: QuCOOP: A Versatile Framework for Solving Composite and Binary-Parametrised Problems on Quantum Annealers
- Authors: Natacha Kuete Meli, Vladislav Golyanik, Marcel Seelbach Benkner, Michael Moeller,
- Abstract summary: QuCOOP is an optimisation framework extending the scope of AQC to composite and binary-parametrised, possibly non-quadratic problems.<n>We experiment with quadratic assignment problems, shape matching and point set registration without knowing the correspondences in advance.
- Score: 25.711225064444296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is growing interest in solving computer vision problems such as mesh or point set alignment using Adiabatic Quantum Computing (AQC). Unfortunately, modern experimental AQC devices such as D-Wave only support Quadratic Unconstrained Binary Optimisation (QUBO) problems, which severely limits their applicability. This paper proposes a new way to overcome this limitation and introduces QuCOOP, an optimisation framework extending the scope of AQC to composite and binary-parametrised, possibly non-quadratic problems. The key idea of QuCOOP~is to iteratively approximate the original objective function by a sequel of local (intermediate) QUBO forms, whose binary parameters can be sampled on AQC devices. We experiment with quadratic assignment problems, shape matching and point set registration without knowing the correspondences in advance. Our approach achieves state-of-the-art results across multiple instances of tested problems.
Related papers
- An encoding of argumentation problems using quadratic unconstrained binary optimization [1.104960878651584]
We develop a way to encode several NP-Complete problems in Abstract Argumentation to Quadratic Unconstrained Binary Optimization problems.
With the QUBO formulation, exploiting new computing architectures, such as Quantum and Digital Annealers, is possible.
We performed tests to prove the correctness and applicability of classical problems in Argumentation and enforcement of argument sets.
arXiv Detail & Related papers (2024-09-09T11:29:46Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Quantum Vision Clustering [9.483577377335305]
We present the first clustering formulation tailored for resolution using Adiabatic quantum computing.<n>The proposed approach demonstrates high competitiveness compared to state-of-the-art optimization-based methods.<n>This work showcases the solvability of the proposed clustering problem on current-generation real quantum computers for small examples.
arXiv Detail & Related papers (2023-09-18T16:15:16Z) - QuAnt: Quantum Annealing with Learnt Couplings [18.40480332882025]
We learn QUBO forms from data through gradient backpropagation instead of deriving them.
We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation.
arXiv Detail & Related papers (2022-10-13T17:59:46Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Testing a QUBO Formulation of Core-periphery Partitioning on a Quantum
Annealer [3.093890460224435]
We present a new kernel that quantifies success for the task of computing a core-periphery partition for an undirected network.
Finding the associated optimal partitioning may be expressed in the form of a quadratic unconstrained binary optimization problem.
We compare this approach with existing core-periphery partitioning methods.
arXiv Detail & Related papers (2022-01-05T11:08:09Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Quantum Permutation Synchronization [88.4588059792167]
We present QuantumSync, the quantum algorithm for solving a quantum vision problem in the context of computer vision.
We show how to insert permutation constraints into a QUBO problem and to solve the constrained QUBO problem on the current generation of the abatic quantum DWave computer.
arXiv Detail & Related papers (2021-01-19T17:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.