CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2503.19878v1
- Date: Tue, 25 Mar 2025 17:43:08 GMT
- Title: CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- Authors: Nengbo Wang, Xiaotian Han, Jagdip Singh, Jing Ma, Vipin Chaudhary,
- Abstract summary: CausalRAG is a novel framework that incorporates causal graphs into the retrieval process.<n>By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision.<n>Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
- Score: 11.265999775635823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
Related papers
- AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG [61.28113271728859]
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation.
Existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content.
We propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment steps.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation [3.8808821719659763]
We introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG)
CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources.
We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods.
arXiv Detail & Related papers (2025-04-17T01:15:13Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG) framework integrates Meta-path Retrieval, In-graph Text and Vector Retrieval into Large Language Models.<n> PKG offers a richer knowledge representation and improves accuracy in information retrieval.
arXiv Detail & Related papers (2025-03-01T02:39:37Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
We propose a Knowledge Graph-Guided Retrieval Augmented Generation framework.<n> KG$2$RAG provides fact-level relationships between chunks, improving the diversity and coherence of the retrieved results.
arXiv Detail & Related papers (2025-02-08T02:14:31Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.<n>Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.<n>We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
Collaborative Retrieval-Augmented Generation framework, DuetRAG, proposed.
bootstrapping philosophy is to simultaneously integrate the domain fintuning and RAG models.
arXiv Detail & Related papers (2024-05-12T09:48:28Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.