論文の概要: VisualQuest: A Diverse Image Dataset for Evaluating Visual Recognition in LLMs
- arxiv url: http://arxiv.org/abs/2503.19936v1
- Date: Tue, 25 Mar 2025 01:23:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:20:45.226815
- Title: VisualQuest: A Diverse Image Dataset for Evaluating Visual Recognition in LLMs
- Title(参考訳): VisualQuest: LLMにおける視覚認識評価のための横画像データセット
- Authors: Kelaiti Xiao, Liang Yang, Paerhati Tulajiang, Hongfei Lin,
- Abstract要約: 本稿では,大規模言語モデルによる非伝統的なスタイリング画像の解釈能力を評価するために設計された,新しい画像データセットであるVisualQuestを紹介する。
従来の写真ベンチマークとは異なり、VisualQuestは抽象的、象徴的、比喩的な要素を含むイメージでモデルに挑戦する。
- 参考スコア(独自算出の注目度): 12.64051404166593
- License:
- Abstract: This paper introduces VisualQuest, a novel image dataset designed to assess the ability of large language models (LLMs) to interpret non-traditional, stylized imagery. Unlike conventional photographic benchmarks, VisualQuest challenges models with images that incorporate abstract, symbolic, and metaphorical elements, requiring the integration of domain-specific knowledge and advanced reasoning. The dataset was meticulously curated through multiple stages of filtering, annotation, and standardization to ensure high quality and diversity. Our evaluations using several state-of-the-art multimodal LLMs reveal significant performance variations that underscore the importance of both factual background knowledge and inferential capabilities in visual recognition tasks. VisualQuest thus provides a robust and comprehensive benchmark for advancing research in multimodal reasoning and model architecture design.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の非従来のスタイル化画像の解釈能力を評価するために設計された,新しい画像データセットであるVisualQuestを紹介する。
従来の写真ベンチマークとは異なり、VisualQuestは抽象的、象徴的、比喩的な要素を含むイメージでモデルに挑戦し、ドメイン固有の知識と高度な推論を統合する必要がある。
データセットは、高い品質と多様性を保証するために、フィルタリング、アノテーション、標準化の複数の段階を通じて慎重にキュレートされた。
複数の最先端マルチモーダルLCMを用いて評価した結果,視覚認識タスクにおける背景知識と推論能力の両方の重要性を裏付ける顕著な性能変化が明らかとなった。
VisualQuestは、マルチモーダル推論とモデルアーキテクチャ設計の研究を進めるための堅牢で包括的なベンチマークを提供する。
関連論文リスト
- Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
MLLM(Multimodal large language model)は、視覚とテキストのモダリティの統合において大きな進歩を遂げた。
マルチモーダル検索拡張生成(RAG)に基づく新しいフレームワークを提案する。
RAGは、画像内のオブジェクト認識、関係識別、空間的理解を強化するために構造化されたシーングラフを導入している。
論文 参考訳(メタデータ) (2024-12-30T13:16:08Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - How to Determine the Preferred Image Distribution of a Black-Box Vision-Language Model? [2.3993515715868714]
本稿では,視覚言語モデル(VLM)に好適な画像分布を特定するための,新しい一般化可能な手法を提案する。
これを異なる3次元オブジェクトのレンダリングタイプに適用することにより、複雑な構造の正確な解釈を必要とする様々な領域で有効性を示す。
特殊なドメインにおけるベンチマークの欠如を解決するために,CAD関連視覚質問応答タスク上でVLMを評価するための新しいデータセットであるCAD-VQAを導入する。
論文 参考訳(メタデータ) (2024-09-03T19:26:13Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々はDraw-and-Understandフレームワークを提案し、視覚的プロンプト理解機能をMLLM(Multimodal Large Language Models)に統合する方法を探る。
視覚的なプロンプトにより、ユーザーはマルチモーダルなインストラクションを通じて対話することができ、モデルの対話性ときめ細かなイメージ理解を高めることができる。
本稿では,様々な学習済みMLLMに適応し,様々な視覚的プロンプトを認識可能な汎用アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
マルチモーダル推論のための質問認識型視覚変換器QA-ViTを提案する。
視覚エンコーダに直接質問認識を埋め込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
論文 参考訳(メタデータ) (2024-02-08T08:03:39Z) - MouSi: Poly-Visual-Expert Vision-Language Models [132.58949014605477]
本稿では,個々の視覚エンコーダの能力の相乗化にアンサンブルエキスパート技術を用いることを提案する。
この技術は、異なる視覚専門家の出力の処理を統一する融合ネットワークを導入する。
本実装では,SAMなどのモデルにおける位置占有率を,実質的な4096からより効率的で管理可能な64,さらには1。
論文 参考訳(メタデータ) (2024-01-30T18:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。