論文の概要: Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want
- arxiv url: http://arxiv.org/abs/2403.20271v3
- Date: Sat, 22 Feb 2025 14:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:47:53.181631
- Title: Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want
- Title(参考訳): 図面と理解: Visual Promptsを活用してMLLMで必要なものを理解する
- Authors: Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng Zou, Yulin Luo, Siyuan Huang, Shanghang Zhang, Hongsheng Li,
- Abstract要約: 我々はDraw-and-Understandフレームワークを提案し、視覚的プロンプト理解機能をMLLM(Multimodal Large Language Models)に統合する方法を探る。
視覚的なプロンプトにより、ユーザーはマルチモーダルなインストラクションを通じて対話することができ、モデルの対話性ときめ細かなイメージ理解を高めることができる。
本稿では,様々な学習済みMLLMに適応し,様々な視覚的プロンプトを認識可能な汎用アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 58.091825321168514
- License:
- Abstract: In this paper, we present the Draw-and-Understand framework, exploring how to integrate visual prompting understanding capabilities into Multimodal Large Language Models (MLLMs). Visual prompts allow users to interact through multi-modal instructions, enhancing the models' interactivity and fine-grained image comprehension. In this framework, we propose a general architecture adaptable to different pre-trained MLLMs, enabling it to recognize various types of visual prompts (such as points, bounding boxes, and free-form shapes) alongside language understanding. Additionally, we introduce MDVP-Instruct-Data, a multi-domain dataset featuring 1.2 million image-visual prompt-text triplets, including natural images, document images, scene text images, mobile/web screenshots, and remote sensing images. Building on this dataset, we introduce MDVP-Bench, a challenging benchmark designed to evaluate a model's ability to understand visual prompting instructions. The experimental results demonstrate that our framework can be easily and effectively applied to various MLLMs, such as SPHINX-X and LLaVA. After training with MDVP-Instruct-Data and image-level instruction datasets, our models exhibit impressive multimodal interaction capabilities and pixel-level understanding, while maintaining their image-level visual perception performance.
- Abstract(参考訳): 本稿では,MLLM(Multimodal Large Language Models)に視覚的プロンプト理解機能を統合する方法について,Draw-and-Understandフレームワークを提案する。
視覚的なプロンプトにより、ユーザーはマルチモーダルなインストラクションを通じて対話することができ、モデルの対話性ときめ細かなイメージ理解を高めることができる。
本稿では,様々な事前学習型MLLMに適用可能な汎用アーキテクチャを提案し,言語理解とともに様々な視覚的プロンプト(点,境界ボックス,自由形形状など)を認識できるようにする。
さらに、自然画像、文書画像、シーンテキスト画像、モバイル/Webスクリーンショット、リモートセンシング画像を含む120万の画像-視覚的プロンプトテキスト三脚を含むマルチドメインデータセットであるMDVP-Instruct-Dataを紹介した。
このデータセットに基づいてMDVP-Benchを導入する。MDVP-Benchは、視覚的なプロンプト命令を理解するモデルの能力を評価するために設計された、挑戦的なベンチマークである。
実験の結果,SPHINX-XやLLaVAなどのMLLMに対して,我々のフレームワークを簡便かつ効果的に適用できることが確認された。
MDVP-Instruct-Dataと画像レベルのインストラクションデータセットを用いてトレーニングした後、画像レベルの視覚知覚性能を維持しながら、印象的なマルチモーダルインタラクション機能と画素レベルの理解を示す。
関連論文リスト
- RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
複数の粒度にまたがる包括的視覚理解のための統一型エンドツーエンドRS VLMであるRSUniVLMを提案する。
RSUniVLMは、変更検出や変更キャプションのインスタンスを含む、マルチイメージ解析において効果的に機能する。
また、RSと一般ドメインの両方の既存のデータセットに基づいて、大規模なRS命令追従データセットを構築した。
論文 参考訳(メタデータ) (2024-12-07T15:11:21Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding [112.87441334765693]
OMG-LLaVAは、強力なピクセルレベルの視覚理解と推論能力を組み合わせた新しいフレームワークである。
フレキシブルなユーザインタラクションのために、さまざまな視覚的およびテキストプロンプトを受け入れることができる。
OMG-LLaVAは1つのモデルで画像レベル、オブジェクトレベル、ピクセルレベルの推論と理解を実現する。
論文 参考訳(メタデータ) (2024-06-27T17:59:01Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
MLLM(Multimodal Large Language Models)の機能を拡張するために, PVIT( Position-enhanced Visual Instruction Tuning)を提案する。
この統合により、MLLMの画像のより詳細な理解が促進される。
本稿では,提案モデルの優位性を示す定量的実験と定性解析の両方について述べる。
論文 参考訳(メタデータ) (2023-08-25T15:33:47Z) - LMEye: An Interactive Perception Network for Large Language Models [43.160353427015025]
LMEyeは、プレイ・アンド・プラグの対話型知覚ネットワークを備えた人間のような眼である。
大規模言語モデルと外部視覚情報との動的相互作用を可能にする。
様々なマルチモーダルタスクにおけるゼロショット性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-05T17:27:21Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
視覚言語事前学習のための視覚言語マスク付きオートエンコーダフレームワーク(VLMAE)を提案する。
VLMAEは視覚的生成学習を採用しており、モデルが細粒度で偏りのない特徴を取得するのを容易にする。
論文 参考訳(メタデータ) (2022-08-19T14:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。