論文の概要: Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
- arxiv url: http://arxiv.org/abs/2503.19945v1
- Date: Tue, 25 Mar 2025 11:51:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:25.666397
- Title: Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
- Title(参考訳): マンモグラムにおける乳癌検診の最適化 : 移行学習,分解能低下,多視点分類の総合的研究
- Authors: Daniel G. P. Petrini, Hae Yong Kim,
- Abstract要約: 本研究は,マンモグラフィにおける乳癌検診における機械学習の適用について,オープンな疑問を呈するものである。
単一ビューと2ビューの分類器の両方において、先行結果より優れたモデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study explores open questions in the application of machine learning for breast cancer detection in mammograms. Current approaches often employ a two-stage transfer learning process: first, adapting a backbone model trained on natural images to develop a patch classifier, which is then used to create a single-view whole-image classifier. Additionally, many studies leverage both mammographic views to enhance model performance. In this work, we systematically investigate five key questions: (1) Is the intermediate patch classifier essential for optimal performance? (2) Do backbone models that excel in natural image classification consistently outperform others on mammograms? (3) When reducing mammogram resolution for GPU processing, does the learn-to-resize technique outperform conventional methods? (4) Does incorporating both mammographic views in a two-view classifier significantly improve detection accuracy? (5) How do these findings vary when analyzing low-quality versus high-quality mammograms? By addressing these questions, we developed models that outperform previous results for both single-view and two-view classifiers. Our findings provide insights into model architecture and transfer learning strategies contributing to more accurate and efficient mammogram analysis.
- Abstract(参考訳): 本研究は,マンモグラフィにおける乳癌検診における機械学習の適用について,オープンな疑問を呈するものである。
現在のアプローチでは、しばしば2段階の転送学習プロセスが採用されている: まず、自然言語で訓練されたバックボーンモデルを適用してパッチ分類器を開発し、その後、単一のビュー全体画像分類器を作成する。
さらに,マンモグラフィー・ビューを利用してモデル性能を向上させる研究も数多く行われている。
本研究は,(1)中間パッチ分類器は最適性能に必須か?
2) 自然な画像分類に優れるバックボーンモデルはマンモグラフィーで他よりも一貫して優れているか?
(3)GPU処理におけるマンモグラム分解能の低減は従来の手法より優れているか?
(4)両マンモグラフィービューを2次元分類器に組み込むことは検出精度を著しく向上させるか?
(5)高品位マンモグラフィーと低品位マンモグラフィーではどのように異なるのか?
これらの問題に対処することで、単ビューと二ビューの分類器の両方において、以前の結果より優れているモデルを開発した。
本研究は,より正確かつ効率的なマンモグラフィー解析に寄与するモデルアーキテクチャと伝達学習戦略に関する知見を提供する。
関連論文リスト
- Towards Robust Natural-Looking Mammography Lesion Synthesis on
Ipsilateral Dual-Views Breast Cancer Analysis [1.1098503592431275]
マンモグラフィ分類タスクの2つの主要な課題は、マルチビューマンモグラフィ情報とクラスアンバランスハンドリングを活用することである。
補助的な視点から低レベル特徴情報を活用することにより,検討された視点(メインビュー)を強化するための,単純だが斬新な手法を提案する。
また, 単純ながら新規なマンモグラム合成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T06:33:30Z) - M&M: Tackling False Positives in Mammography with a Multi-view and
Multi-instance Learning Sparse Detector [13.67324365495568]
深層学習に基づく物体検出法は, マンモグラフィーのスクリーニングの改善を約束するが, 偽陽性率が高いと臨床実践における効果を阻害する可能性がある。
自然画像とは異なり,悪性マンモグラフィーは1つの悪性所見のみを含むのが一般的であり,マンモグラフィー検査は各乳房の2つの視点を含むため,どちらの視点も正しく評価されるべきである。
我々は,(1)スパースR-CNNの活用,(2)マンモグラフィの高密度検出器よりもスパース検出器の方が適切であることを示す,(2)異なる視点から情報を合成するための多視点横断モジュールを含む,3つの課題に取り組む。
論文 参考訳(メタデータ) (2023-08-11T23:59:47Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Mammograms Classification: A Review [0.0]
マンモグラム画像はコンピュータ支援診断システムの開発に利用されてきた。
研究者たちは、人工知能が病気の早期発見に利用できることを証明した。
論文 参考訳(メタデータ) (2022-03-04T19:22:35Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Using Machine Learning to Automate Mammogram Images Analysis [12.19801103274363]
X線マンモグラフィーによる乳がんの早期発見は死亡率を効果的に低下させたと考えられている。
マンモグラム画像を処理するコンピュータ支援自動マンモグラム解析システムを提案し, 正常または癌として自動的に識別する。
論文 参考訳(メタデータ) (2020-12-06T00:10:18Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。