論文の概要: Bigger But Not Better: Small Neural Language Models Outperform Large Language Models in Detection of Thought Disorder
- arxiv url: http://arxiv.org/abs/2503.20103v1
- Date: Tue, 25 Mar 2025 22:55:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:02.859463
- Title: Bigger But Not Better: Small Neural Language Models Outperform Large Language Models in Detection of Thought Disorder
- Title(参考訳): より大きいが、良くない: 思考障害の検出において、大きな言語モデルより優れた小さなニューラル言語モデル
- Authors: Changye Li, Weizhe Xu, Serguei Pakhomov, Ellen Bradley, Dror Ben-Zeev, Trevor Cohen,
- Abstract要約: より小さなニューラルネットワークモデルが正の形式的思考障害の検出に有効な選択肢となるかどうかを検討する。
意外なことに,本研究の結果は,より小さなモデルの方が,形式的思考障害に関連する言語的差異に敏感であることが示唆された。
- 参考スコア(独自算出の注目度): 7.585589727435719
- License:
- Abstract: Disorganized thinking is a key diagnostic indicator of schizophrenia-spectrum disorders. Recently, clinical estimates of the severity of disorganized thinking have been shown to correlate with measures of how difficult speech transcripts would be for large language models (LLMs) to predict. However, LLMs' deployment challenges -- including privacy concerns, computational and financial costs, and lack of transparency of training data -- limit their clinical utility. We investigate whether smaller neural language models can serve as effective alternatives for detecting positive formal thought disorder, using the same sliding window based perplexity measurements that proved effective with larger models. Surprisingly, our results show that smaller models are more sensitive to linguistic differences associated with formal thought disorder than their larger counterparts. Detection capability declines beyond a certain model size and context length, challenging the common assumption of ``bigger is better'' for LLM-based applications. Our findings generalize across audio diaries and clinical interview speech samples from individuals with psychotic symptoms, suggesting a promising direction for developing efficient, cost-effective, and privacy-preserving screening tools that can be deployed in both clinical and naturalistic settings.
- Abstract(参考訳): 分散思考は統合失調症・スペクトラム障害の重要な診断指標である。
近年,非組織的思考の重症度に関する臨床的評価は,大規模言語モデル (LLM) における音声書き起こしの難易度と相関することが示されている。
しかし、プライバシー問題、計算と財政のコスト、トレーニングデータの透明性の欠如など、LCMsの展開課題は、臨床効果を制限している。
より小さなニューラルネットワークモデルが,より大きなモデルで有効であることが証明されたスライディングウインドウに基づくパープレキシティ測定を用いて,正の形式的思考障害を検出する効果的な代替手段として有効であるかどうかを検討する。
意外なことに,本研究の結果は,より小さなモデルの方が,形式的思考障害に関連する言語的差異に敏感であることが示唆された。
検出能力は、特定のモデルサイズやコンテキスト長を超えて低下し、LLMベースのアプリケーションでは '\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
本研究は, 精神症状のある人を対象に, 音声日記と臨床面接音声サンプルを一般化し, 臨床と自然の両方に展開可能な, 効率的, 費用対効果, プライバシ保護スクリーニングツールの開発に向けた有望な方向性を示唆した。
関連論文リスト
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
アルツハイマー病(英: Alzheimer's Disease、AD)は、世界中で5000万人が発症する、不可逆的な神経変性疾患である。
言語障害は認知低下の最も初期の兆候の1つであり、AD患者を正常なコントロール個人と区別するために使用することができる。
患者間対話はそのような障害を検出するために用いられるが、曖昧でうるさい、無関係な情報と混同されることが多い。
論文 参考訳(メタデータ) (2025-02-06T04:00:25Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
アルツハイマー病(AD)は高齢化社会において最も重要な健康問題の一つとなっている。
我々は,大言語モデル(LLM)とTF-IDFモデルの視覚的機能を活用する,説明可能な効果的な機能セットを考案した。
当社の新機能は、自動ADスクリーニングの解釈可能性を高めるステップバイステップで説明し、解釈することができる。
論文 参考訳(メタデータ) (2024-11-28T05:23:22Z) - Generative causal testing to bridge data-driven models and scientific theories in language neuroscience [82.995061475971]
脳における言語選択性の簡潔な説明を生成するためのフレームワークである生成因果テスト(GCT)を提案する。
GCTは機能的選択性に類似した脳領域の細粒度の違いを識別できることを示す。
論文 参考訳(メタデータ) (2024-10-01T15:57:48Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
大規模言語モデルは、一般的な医学的知識をエンコードする能力において有望な結果を示している。
内科的知識を活用しててててんかんの診断を行う技術について検討した。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - Language Generation from Brain Recordings [68.97414452707103]
本稿では,大言語モデルと意味脳デコーダの容量を利用した生成言語BCIを提案する。
提案モデルでは,視覚的・聴覚的言語刺激のセマンティック内容に整合したコヒーレントな言語系列を生成することができる。
本研究は,直接言語生成におけるBCIの活用の可能性と可能性を示すものである。
論文 参考訳(メタデータ) (2023-11-16T13:37:21Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
大規模な事前訓練型言語モデル(LLM)は、しばしば伝統的な検索エンジンの代替として、広く使われるようになった。
しかし、言語モデルは説得力のあるが事実的に不正確な主張をしがちである(しばしば「幻覚」と呼ばれる)。
本研究では,人間のラベル付けなしに,より現実的な言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-14T18:59:15Z) - Reformulating NLP tasks to Capture Longitudinal Manifestation of
Language Disorders in People with Dementia [18.964022118823532]
我々は中程度の大きさの事前学習言語モデルを用いて言語障害パターンを学習する。
次に、最良モデルからの確率推定値を用いて、デジタル言語マーカーを構築する。
提案する言語障害マーカーは,疾患進行に伴う言語障害に関する有用な知見を提供する。
論文 参考訳(メタデータ) (2023-10-15T17:58:47Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Almanac: Retrieval-Augmented Language Models for Clinical Medicine [1.5505279143287174]
医療ガイドラインと治療勧告の検索機能を備えた大規模言語モデルフレームワークであるAlmanacを開発した。
5人の医師と医師のパネルで評価された新しい臨床シナリオのデータセットの性能は、事実性の顕著な増加を示している。
論文 参考訳(メタデータ) (2023-03-01T02:30:11Z) - Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease [0.0]
パープレキシティはもともと、与えられた言語モデルがテキストシーケンスを予測するのにどの程度適しているかを評価するための情報理論の尺度として考え出された。
我々は2グラムから5グラムまでのN-gramとトランスフォーマーベース言語モデルであるGPT-2を多種多様な言語モデルに適用した。
ベストパフォーマンスモデルでは、ADクラスと制御対象の両方から対象を分類する際に、完全精度とFスコア(精度/特異度とリコール/感度のそれぞれ1.00)を達成した。
論文 参考訳(メタデータ) (2023-02-02T11:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。