論文の概要: "Is There Anything Else?'': Examining Administrator Influence on Linguistic Features from the Cookie Theft Picture Description Cognitive Test
- arxiv url: http://arxiv.org/abs/2503.20104v1
- Date: Tue, 25 Mar 2025 23:01:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:01.718417
- Title: "Is There Anything Else?'': Examining Administrator Influence on Linguistic Features from the Cookie Theft Picture Description Cognitive Test
- Title(参考訳): 「何かあったのか」:クック・セフト画像記述認知テストの言語的特徴に対する管理者の影響について
- Authors: Changye Li, Zhecheng Sheng, Trevor Cohen, Serguei Pakhomov,
- Abstract要約: アルツハイマー病(英語: Alzheimer's Disease、AD)は、進行性神経変性疾患であり、患者の認知能力に悪影響を及ぼす。
患者音声の言語学的特徴に有意な影響が認められた。
テスト管理者の振る舞いのバリエーションは、言語データに体系的なバイアスをもたらし、研究結果と臨床評価を裏付ける可能性がある。
- 参考スコア(独自算出の注目度): 7.21603206617401
- License:
- Abstract: Alzheimer's Disease (AD) dementia is a progressive neurodegenerative disease that negatively impacts patients' cognitive ability. Previous studies have demonstrated that changes in naturalistic language samples can be useful for early screening of AD dementia. However, the nature of language deficits often requires test administrators to use various speech elicitation techniques during spontaneous language assessments to obtain enough propositional utterances from dementia patients. This could lead to the ``observer's effect'' on the downstream analysis that has not been fully investigated. Our study seeks to quantify the influence of test administrators on linguistic features in dementia assessment with two English corpora the ``Cookie Theft'' picture description datasets collected at different locations and test administrators show different levels of administrator involvement. Our results show that the level of test administrator involvement significantly impacts observed linguistic features in patient speech. These results suggest that many of significant linguistic features in the downstream classification task may be partially attributable to differences in the test administration practices rather than solely to participants' cognitive status. The variations in test administrator behavior can lead to systematic biases in linguistic data, potentially confounding research outcomes and clinical assessments. Our study suggests that there is a need for a more standardized test administration protocol in the development of responsible clinical speech analytics frameworks.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's Disease、AD)は、進行性神経変性疾患であり、患者の認知能力に悪影響を及ぼす。
従来の研究では、自然言語のサンプルの変化がAD認知症の早期スクリーニングに有用であることが示されている。
しかし、言語障害の性質は、認知症患者から十分な命題発声を得るために、自発的言語アセスメント中に様々な音声誘発テクニックをテスト管理者に使わなければならないことが多い。
これは、十分に調査されていない下流分析の ‘observer's effect'' につながる可能性がある。
本研究は,「Cookie Theft」と「Cookie Theft」と「Cookie Theft」の2つの英語コーパスを用いて,認知症評価における言語的特徴に対するテスト管理者の影響を定量化することを目的としている。
以上の結果より, 患者音声の言語学的特徴に有意な影響が認められた。
これらの結果は、下流分類課題における重要な言語的特徴の多くは、参加者の認知的地位に限らず、テスト管理の実践の違いに起因する可能性があることを示唆している。
テスト管理者の振る舞いのバリエーションは言語データに体系的なバイアスをもたらし、研究成果と臨床評価を裏付ける可能性がある。
本研究は,臨床音声分析フレームワークの開発において,より標準化された検査管理プロトコルが必要であることを示唆している。
関連論文リスト
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
アルツハイマー病(英: Alzheimer's Disease、AD)は、世界中で5000万人が発症する、不可逆的な神経変性疾患である。
言語障害は認知低下の最も初期の兆候の1つであり、AD患者を正常なコントロール個人と区別するために使用することができる。
患者間対話はそのような障害を検出するために用いられるが、曖昧でうるさい、無関係な情報と混同されることが多い。
論文 参考訳(メタデータ) (2025-02-06T04:00:25Z) - Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection [62.942077348224046]
アルツハイマー病(AD)の自動診断における音声認識の役割
近年の研究では,単語誤り率(WER)とAD検出性能の非線形関係が明らかにされている。
本研究は,BERTを用いたAD検出システムにおけるASR転写誤りの影響について,一連の解析を行った。
論文 参考訳(メタデータ) (2024-12-09T09:32:20Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
アルツハイマー病(AD)は高齢化社会において最も重要な健康問題の一つとなっている。
我々は,大言語モデル(LLM)とTF-IDFモデルの視覚的機能を活用する,説明可能な効果的な機能セットを考案した。
当社の新機能は、自動ADスクリーニングの解釈可能性を高めるステップバイステップで説明し、解釈することができる。
論文 参考訳(メタデータ) (2024-11-28T05:23:22Z) - Infusing Acoustic Pause Context into Text-Based Dementia Assessment [7.8642589679025034]
本研究は, 認知障害のない被験者の認知状態, 軽度認知障害, およびアルツハイマー認知症を, 臨床的評価に基づいて区別するために, 言語モデルにおける停止強調文字の使用について検討した。
この性能は、ドイツ語の言語頻度テストと画像記述テストの実験を通じて評価され、異なる音声生成コンテキストにおけるモデルの有効性を比較した。
論文 参考訳(メタデータ) (2024-08-27T16:44:41Z) - Zero-Shot Multi-Lingual Speaker Verification in Clinical Trials [4.231937382464348]
臨床試験では、患者の音声データに基づいて、認知や精神の健康障害を検出し、モニターする。
我々は,これらの音声記録を用いて,登録患者の身元を確認し,同じ臨床試験で複数回登録しようとする個人を特定し,排除することを提案する。
我々は、英語、ドイツ語、デンマーク語、スペイン語、アラビア語を母語とする言語障害者を対象に、事前訓練したTitaNet, ECAPA-TDNN, SpeakerNetモデルの評価を行った。
論文 参考訳(メタデータ) (2024-04-02T14:19:30Z) - Comparing Hallucination Detection Metrics for Multilingual Generation [62.97224994631494]
本稿では,各言語にまたがって生成した伝記要約における幻覚を,様々な事実の幻覚検出指標がいかによく識別するかを評価する。
自動測度が相互にどのように相関するか, 事実判断に一致しているかを比較検討した。
我々の分析によると、語彙指標は非効率であるが、NLIベースのメトリクスはよく機能し、多くの設定における人間のアノテーションと相関し、しばしば教師付きモデルよりも優れている。
論文 参考訳(メタデータ) (2024-02-16T08:10:34Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
記憶障害の症状の早期発見は、集団の健康確保に重要な役割を担っている。
臨床環境における標準化された音声テストの欠如は、自然音声言語を解析するための自動機械学習技術の開発にますます重点を置いている。
この研究は特徴選択に関するアプローチを示し、ジュネーブの最小音響パラメータセットと相対音声停止から診断に必要な重要な特徴を自動的に選択することを可能にする。
論文 参考訳(メタデータ) (2024-02-02T17:06:03Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Predicting Early Indicators of Cognitive Decline from Verbal Utterances [2.387625146176821]
認知症 (Dementia) は、記憶障害、コミュニケーション障害、思考過程を引き起こす、不可逆的、慢性的、進歩的な神経変性疾患のグループである。
神経心理学試験における発話の言語的特徴を用いて,高齢者コントロールグループ,MCI,アルツハイマー病(AD)とADの鑑別が可能かを検討した。
以上の結果から, 高齢者の言語発話, MCI, AD, ADの区別が, 文脈的, 心理言語学的特徴の組合せによって改善されることが示唆された。
論文 参考訳(メタデータ) (2020-11-19T02:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。