From Interpretation to Correction: A Decentralized Optimization Framework for Exact Convergence in Federated Learning
- URL: http://arxiv.org/abs/2503.20117v1
- Date: Tue, 25 Mar 2025 23:54:23 GMT
- Title: From Interpretation to Correction: A Decentralized Optimization Framework for Exact Convergence in Federated Learning
- Authors: Bicheng Ying, Zhe Li, Haibo Yang,
- Abstract summary: This work introduces a novel decentralized framework to interpret which corrects the biases introduced by arbitrary client participation and data heterogeneity.<n>We are able to provide a concise analysis to quantify the impact of arbitrary participation and data heterogeneity on FedAvg's convergence point.<n>This insight motivates the development of Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS)
- Score: 9.870718388000645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a novel decentralized framework to interpret federated learning (FL) and, consequently, correct the biases introduced by arbitrary client participation and data heterogeneity, which are two typical traits in practical FL. Specifically, we first reformulate the core processes of FedAvg - client participation, local updating, and model aggregation - as stochastic matrix multiplications. This reformulation allows us to interpret FedAvg as a decentralized algorithm. Leveraging the decentralized optimization framework, we are able to provide a concise analysis to quantify the impact of arbitrary client participation and data heterogeneity on FedAvg's convergence point. This insight motivates the development of Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS), a novel algorithm inspired by the decentralized algorithm that eliminates these biases and achieves exact convergence without requiring the bounded heterogeneity assumption. Furthermore, we theoretically prove that FOCUS exhibits linear convergence (exponential decay) for both strongly convex and non-convex functions satisfying the Polyak-Lojasiewicz condition, regardless of the arbitrary nature of client participation.
Related papers
- Federated Smoothing ADMM for Localization [9.25126455172971]
Federated systems are characterized by distributed data, non-smoothity, and non-smoothness.<n>We propose a robust algorithm to tackle the scalability and outlier issues inherent in such environments.<n>To validate the reliability of the proposed algorithm, we show that it converges to a stationary point.<n> numerical simulations highlight its superior performance in convergence resilience compared to existing state-of-the-art localization methods.
arXiv Detail & Related papers (2025-03-12T16:01:34Z) - Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Decentralized Directed Collaboration for Personalized Federated Learning [39.29794569421094]
We concentrate on the Decentralized Personalized Learning (DPFL) that performs distributed training model computation.
We propose a directed collaboration framework by incorporating textbfDecentralized textbfFederated textbfPartial textbfGradient textbfPedGP.
arXiv Detail & Related papers (2024-05-28T06:52:19Z) - On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond [37.894835756324454]
Federated averaging (FedAvg) is the most fundamental algorithm in Federated learning (FL)<n>Recent empirical results show that FedAvg can perform well in many real-world heterogeneous tasks.<n>We present a simple and effective FedAvg variant termed FedAWARE.
arXiv Detail & Related papers (2023-10-04T10:15:57Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
This paper extends the inference view and describes a variational inference formulation of federated learning.
We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
arXiv Detail & Related papers (2023-02-08T17:58:11Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
We present a unifying framework for heterogeneous FL algorithms with em arbitrary adaptive online model pruning.
In particular, we prove that under certain sufficient conditions, these algorithms converge to a stationary point of standard FL for general smooth cost functions.
We illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index.
arXiv Detail & Related papers (2022-01-27T20:43:38Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
This paper provides a framework to analyze the convergence of federated heterogeneous optimization algorithms.
We propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
arXiv Detail & Related papers (2020-07-15T05:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.