論文の概要: Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
- arxiv url: http://arxiv.org/abs/2503.20126v1
- Date: Wed, 26 Mar 2025 00:27:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:18.343964
- Title: Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
- Title(参考訳): コードグリーン化は可能か? LLMにおけるトレードオフの理解と人間のコード最適化
- Authors: Pooja Rani, Jan-Andrea Bard, June Sallou, Alexander Boll, Timo Kehrer, Alberto Bacchelli,
- Abstract要約: 大規模言語モデル(LLM)は、パフォーマンスとエネルギー効率の最適化を開発者が支援すると主張している。
この研究は、科学と工学の応用のために学術と産業の両方で広く使われているマットラブで書かれたソフトウェアに焦点を当てている。
トップ100のGitHubリポジトリで400スクリプトのエネルギ中心の最適化を分析します。
- 参考スコア(独自算出の注目度): 45.243401722182554
- License:
- Abstract: The rapid technological evolution has accelerated software development for various domains and use cases, contributing to a growing share of global carbon emissions. While recent large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency, their efficacy in real-world scenarios remains under exploration. In this work, we explore the effectiveness of LLMs in reducing the environmental footprint of real-world projects, focusing on software written in Matlab-widely used in both academia and industry for scientific and engineering applications. We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories. We examine potential 2,176 optimizations recommended by leading LLMs, such as GPT-3, GPT-4, Llama, and Mixtral, and a senior Matlab developer, on energy consumption, memory usage, execution time consumption, and code correctness. The developer serves as a real-world baseline for comparing typical human and LLM-generated optimizations. Mapping these optimizations to 13 high-level themes, we found that LLMs propose a broad spectrum of improvements--beyond energy efficiency--including improving code readability and maintainability, memory management, error handling while the developer overlooked some parallel processing, error handling etc. However, our statistical tests reveal that the energy-focused optimizations unexpectedly negatively impacted memory usage, with no clear benefits regarding execution time or energy consumption. Our qualitative analysis of energy-time trade-offs revealed that some themes, such as vectorization preallocation, were among the common themes shaping these trade-offs. With LLMs becoming ubiquitous in modern software development, our study serves as a call to action: prioritizing the evaluation of common coding practices to identify the green ones.
- Abstract(参考訳): 急速な技術革新により、様々なドメインやユースケースのソフトウェア開発が加速し、グローバルな二酸化炭素排出量のシェアが拡大した。
最近の大規模言語モデル(LLM)は、パフォーマンスとエネルギー効率のためにコードを最適化するのに役立つと主張しているが、現実のシナリオにおけるそれらの有効性はまだ検討中である。
本研究では,学術・工学の両分野において広く使用されているソフトウェアに焦点をあて,実世界のプロジェクトにおける環境フットプリント削減におけるLCMの有効性について検討する。
トップ100のGitHubリポジトリで400スクリプトのエネルギ中心の最適化を分析します。
我々は,GPT-3,GPT-4,Llama,MixtralなどのLLMを先導して推奨される2,176個の最適化について,エネルギー消費,メモリ使用量,実行時間消費量,コード正確性について検討した。
開発者は、典型的な人間とLLM生成最適化を比較するための現実世界のベースラインとして機能する。
これらの最適化を13のハイレベルなテーマにマッピングすると、LCMは、コードの可読性や保守性、メモリ管理、エラー処理などを含む、幅広い改善点を提案し、開発者は並列処理やエラー処理を見落としている。
しかし, エネルギーに着目した最適化は, メモリ使用量に予期せず悪影響を及ぼし, 実行時間やエネルギー消費に関する明確なメリットは得られなかった。
エネルギー時間トレードオフの定性的分析により、ベクトル化前配置のようないくつかのテーマが、これらのトレードオフを形作る一般的なテーマの1つであることが判明した。
現代のソフトウェア開発でLLMがユビキタスになるにつれて、私たちの研究は行動の呼びかけとして役立ちます。
関連論文リスト
- The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
大きな言語モデル(LLM)は、安全のための有害な要求を拒否することと、ユーティリティのための正当な要求を収容することのバランスをとる必要がある。
本稿では,DPO(Direct Preference Optimization)に基づくアライメントフレームワークを提案する。
我々は,DeepSeek-R1をベンチマークでテストした結果を解析し,この高い評価を得たモデルがもたらす批判的倫理的懸念を明らかにする。
論文 参考訳(メタデータ) (2025-01-20T06:35:01Z) - GREEN-CODE: Learning to Optimize Energy Efficiency in LLM-based Code Generation [1.5749416770494706]
本研究では,Large Language Models (LLM) におけるエネルギーを考慮したコード生成フレームワークを提案する。
我々は、正確性、レイテンシ、エネルギー消費のトレードオフのバランスをとることを学ぶ強化学習エージェント(RL)を訓練する。
その結果,コード生成作業における平均23~50パーセントのエネルギー消費を,精度に悪影響を及ぼすことなく削減できることが示唆された。
論文 参考訳(メタデータ) (2025-01-19T10:44:03Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを支援するために広く採用されている。
LLM生成コードの性能を向上させるトレーニングフリーフレームワークPerfCodeGenを提案する。
論文 参考訳(メタデータ) (2024-11-18T06:22:38Z) - Green My LLM: Studying the key factors affecting the energy consumption of code assistants [1.747820331822631]
本稿では,GitHub Copilotのような大規模言語モデルに基づくコードアシスタントのエネルギー消費について検討する。
その結果,コードアシスタントのエネルギー消費と性能は,コンカレント開発者の数など,様々な要因に影響されていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T16:00:29Z) - Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions [2.848398051763324]
エネルギー効率向上のための符号として,大規模言語モデル (LLM) の新たな適用法を提案する。
我々はプロトタイプを記述し評価し、我々のシステムでは、コンパイラの最適化だけで最大2倍のエネルギー効率を向上できる6つの小さなプログラムを探索した。
論文 参考訳(メタデータ) (2024-10-11T20:35:40Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
本研究の目的は,画像分類データセットと事前学習モデルの解析,最適化モデルと非最適化モデルを比較して推論効率を向上させること,最適化の経済的影響を評価することである。
画像分類におけるPyTorch最適化手法(動的量子化、トーチ・コンパイル、局所プルーニング、グローバルプルーニング)と42のHugging Faceモデルの影響を評価するための制御実験を行った。
動的量子化は推論時間とエネルギー消費の大幅な削減を示し、大規模システムに非常に適している。
論文 参考訳(メタデータ) (2024-09-19T16:23:03Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - A Controlled Experiment on the Energy Efficiency of the Source Code Generated by Code Llama [4.937787069991124]
ソフトウェア開発者の83%がコード生成にLLM(Large Language Models)を使用している。
本稿では,人手によるソースコードに関して,コードラマのエネルギー効率を評価する。
論文 参考訳(メタデータ) (2024-05-06T16:32:29Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
大規模言語モデル(LLM)は、ユーザが仕事を達成するのを助けるアシスタントとして機能し、高度なアプリケーションの開発をサポートする。
LLMの幅広い応用にとって、推論効率は重要な問題であり、既存の研究で広く研究されている。
各種コードライブラリの推論性能の粗大な解析を行う。
論文 参考訳(メタデータ) (2024-04-17T15:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。