Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos
- URL: http://arxiv.org/abs/2503.20258v1
- Date: Wed, 26 Mar 2025 05:54:13 GMT
- Title: Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos
- Authors: Jiaheng Zhou, Yanfeng Zhou, Wei Fang, Yuxing Tang, Le Lu, Ge Yang,
- Abstract summary: We introduce E-ViM$3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data.<n>Our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.
- Score: 11.589704875476325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound videos are an important form of clinical imaging data, and deep learning-based automated analysis can improve diagnostic accuracy and clinical efficiency. However, the scarcity of labeled data and the inherent challenges of video analysis have impeded the advancement of related methods. In this work, we introduce E-ViM$^3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data, enhancing long-range dependencies and inductive biases to better model space-time correlations. With our design of Enclosure Global Tokens (EGT), the model captures and aggregates global features more effectively than competing methods. To further improve data efficiency, we employ masked video modeling for self-supervised pre-training, with the proposed Spatial-Temporal Chained (STC) masking strategy designed to adapt to various video scenarios. Experiments demonstrate that E-ViM$^3$ performs as the state-of-the-art in two high-level semantic analysis tasks across four datasets of varying sizes: EchoNet-Dynamic, CAMUS, MICCAI-BUV, and WHBUS. Furthermore, our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.
Related papers
- Prototype-Guided Diffusion for Digital Pathology: Achieving Foundation Model Performance with Minimal Clinical Data [6.318463500874778]
We propose a prototype-guided diffusion model to generate high-fidelity synthetic pathology data at scale.
Our approach ensures biologically and diagnostically meaningful variations in the generated data.
We demonstrate that self-supervised features trained on our synthetic dataset achieve competitive performance despite using 60x-760x less data than models trained on large real-world datasets.
arXiv Detail & Related papers (2025-04-15T21:17:39Z) - Quantity versus Diversity: Influence of Data on Detecting EEG Pathology with Advanced ML Models [0.0]
This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology.<n>We utilize an EEG dataset of 2,993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o.<n>Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation.
arXiv Detail & Related papers (2024-11-13T16:15:48Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [46.44049019428938]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - SurgMAE: Masked Autoencoders for Long Surgical Video Analysis [4.866110274299399]
Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs)
In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain.
We propose SurgMAE, which is a novel architecture with a masking strategy on sampling high-temporal tokens for MAE.
arXiv Detail & Related papers (2023-05-19T06:12:50Z) - MC-ViViT: Multi-branch Classifier-ViViT to detect Mild Cognitive
Impairment in older adults using facial videos [44.72781467904852]
This paper proposes a novel Multi-branch-Video Vision Transformer (MCViViT) model to distinguish from those with normal cognition by analyzing facial features.
The data comes from the I-CONECT, a behavioral intervention trial aimed at improving cognitive function by providing frequent video chats.
Our experimental results on I-CONECT dataset show the great potential of MC-ViViT in predicting MCI with a high accuracy of 90.63%.
arXiv Detail & Related papers (2023-04-11T15:42:20Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
We propose a graph-transformer-based network to handle heterogeneous clinical data.
We show the benefit of our pre-training method in a self-supervised and a transfer learning setting.
arXiv Detail & Related papers (2022-07-21T16:59:09Z) - UNetFormer: A Unified Vision Transformer Model and Pre-Training
Framework for 3D Medical Image Segmentation [14.873473285148853]
We introduce a unified framework consisting of two architectures, dubbed UNetFormer, with a 3D Swin Transformer-based encoder and Conal Neural Network (CNN) and transformer-based decoders.
In the proposed model, the encoder is linked to the decoder via skip connections at five different resolutions with deep supervision.
We present a methodology for self-supervised pre-training of the encoder backbone via learning to predict randomly masked tokens.
arXiv Detail & Related papers (2022-04-01T17:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.