Quantity versus Diversity: Influence of Data on Detecting EEG Pathology with Advanced ML Models
- URL: http://arxiv.org/abs/2411.17709v1
- Date: Wed, 13 Nov 2024 16:15:48 GMT
- Title: Quantity versus Diversity: Influence of Data on Detecting EEG Pathology with Advanced ML Models
- Authors: Martyna Poziomska, Marian Dovgialo, Przemysław Olbratowski, Paweł Niedbalski, Paweł Ogniewski, Joanna Zych, Jacek Rogala, Jarosław Żygierewicz,
- Abstract summary: This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology.
We utilize an EEG dataset of 2,993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o.
Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation.
- Score: 0.0
- License:
- Abstract: This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology. We utilized an EEG dataset of 2,993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o. The latter contains data from 39 hospitals and a diverse patient set with varied conditions. Thus, we introduce the Elmiko dataset - the largest publicly available EEG corpus. Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation. Nonetheless, increasing the number of available recordings improves predictive accuracy and may even compensate for data diversity, particularly in neural networks based on attention mechanism or transformer architecture. A meta-model that combined these networks with a gradient-boosting approach using handcrafted features demonstrated superior performance across varied datasets.
Related papers
- Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
High variability across subjects poses a significant challenge when it comes to deploying machine learning models for classification tasks in the real world.
In such instances, machine learning models that exhibit exceptional performance on a specific dataset may not necessarily demonstrate similar proficiency when applied to a distinct dataset for the same task.
We introduce Transfer Euclidean Alignment - a transfer learning technique to tackle the problem of the robustness of human biomedical data for training deep learning models.
arXiv Detail & Related papers (2023-10-03T19:48:02Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years.
Deep learning for EEG classification tasks has been limited by the relatively small size of EEG datasets.
Data augmentation has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech.
arXiv Detail & Related papers (2022-06-29T09:18:15Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
We investigate the issues related to applying a Deep Learning model on heterogeneous datasets.
We show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions.
We then evaluate the use of Transfer Learning to adapt the model to the different datasets.
arXiv Detail & Related papers (2021-10-26T14:26:55Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.