論文の概要: Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
- arxiv url: http://arxiv.org/abs/2503.20341v1
- Date: Wed, 26 Mar 2025 09:11:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:29.064082
- Title: Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
- Title(参考訳): 連続文脈によるワッサーシュタイン分布ロバストベイズ最適化
- Authors: Francesco Micheli, Efe C. Balta, Anastasios Tsiamis, John Lygeros,
- Abstract要約: 我々は,文脈分布の不確実性の下での逐次的データ駆動意思決定の課題に対処する。
We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization。
我々の理論解析はヒルベルト空間における自己正規化濃度と分布的ロバストな最適化のための有限サンプル境界の最近の結果を組み合わせたものである。
- 参考スコア(独自算出の注目度): 5.4147994801415145
- License:
- Abstract: We address the challenge of sequential data-driven decision-making under context distributional uncertainty. This problem arises in numerous real-world scenarios where the learner optimizes black-box objective functions in the presence of uncontrollable contextual variables. We consider the setting where the context distribution is uncertain but known to lie within an ambiguity set defined as a ball in the Wasserstein distance. We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization that can handle continuous context distributions while maintaining computational tractability. Our theoretical analysis combines recent results in self-normalized concentration in Hilbert spaces and finite-sample bounds for distributionally robust optimization to establish sublinear regret bounds that match state-of-the-art results. Through extensive comparisons with existing approaches on both synthetic and real-world problems, we demonstrate the simplicity, effectiveness, and practical applicability of our proposed method.
- Abstract(参考訳): 我々は,文脈分布の不確実性の下での逐次的データ駆動意思決定の課題に対処する。
この問題は、学習者が制御不能な文脈変数の存在下でブラックボックスの目的関数を最適化する現実的なシナリオで発生する。
文脈分布が不確かであるが、ワッサーシュタイン距離の球として定義されるあいまいさ集合の中に存在することが知られているような設定を考える。
本稿では、連続的な文脈分布を計算的トラクタビリティを維持しながら処理できるワッサーシュタイン分布ロバスト・ベイズ最適化の新しいアルゴリズムを提案する。
我々の理論解析は、ヒルベルト空間における自己正規化濃度の最近の結果と、分布的に堅牢な最適化のための有限サンプル境界とを組み合わせて、最先端の結果と一致する部分線型後悔境界を確立する。
提案手法の簡易性, 有効性, 実用性を実証する。
関連論文リスト
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Stochastic Bayesian Optimization with Unknown Continuous Context
Distribution via Kernel Density Estimation [28.413085548038932]
本稿では,カーネル密度推定を用いて連続文脈変数の確率密度関数(PDF)をオンラインで学習する2つのアルゴリズムを提案する。
理論的結果は、両方のアルゴリズムが期待する目的に対して準線形ベイズ累積後悔を持つことを示している。
論文 参考訳(メタデータ) (2023-12-16T11:32:28Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization [11.034091190797671]
本稿では, 関東ロビッチ輸送コスト, 測定可能な損失関数, および有意な確率分布を抑えるような, 分散的ロバストな最適化のための一般化双対性結果を提案する。
我々は、ある可測射影と弱い可測選択条件が満たされている場合にのみ、交換可能性原理が成立することを示した。
論文 参考訳(メタデータ) (2022-04-30T22:49:01Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
確率のある不確実なパラメータを文脈的特徴情報を用いて推定できる実世界の多くの最適化問題である。
不確実なパラメータの分布を推定する標準的な手法とは対照的に,統合された条件推定手法を提案する。
当社のI CEOアプローチは、穏健な条件下で理論的に一貫性があることを示します。
論文 参考訳(メタデータ) (2021-10-24T04:49:35Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。