論文の概要: Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
- arxiv url: http://arxiv.org/abs/2503.20466v1
- Date: Wed, 26 Mar 2025 11:51:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:29.267005
- Title: Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
- Title(参考訳): 変分推論と変圧器によるデータ駆動季節気候予測
- Authors: Lluís Palma, Alejandro Peraza, David Civantos, Amanda Duarte, Stefano Materia, Ángel G. Muñoz, Jesús Peña, Laia Romero, Albert Soret, Markus G. Donat,
- Abstract要約: 我々は季節予測のための気候モデル出力の生成モデルを訓練する。
気候変動に伴う傾向を超えた年次異常予測における手法の性能分析を行った。
- 参考スコア(独自算出の注目度): 31.98107454758077
- License:
- Abstract: Most operational climate services providers base their seasonal predictions on initialised general circulation models (GCMs) or statistical techniques that fit past observations. GCMs require substantial computational resources, which limits their capacity. In contrast, statistical methods often lack robustness due to short historical records. Recent works propose machine learning methods trained on climate model output, leveraging larger sample sizes and simulated scenarios. Yet, many of these studies focus on prediction tasks that might be restricted in spatial extent or temporal coverage, opening a gap with existing operational predictions. Thus, the present study evaluates the effectiveness of a methodology that combines variational inference with transformer models to predict fields of seasonal anomalies. The predictions cover all four seasons and are initialised one month before the start of each season. The model was trained on climate model output from CMIP6 and tested using ERA5 reanalysis data. We analyse the method's performance in predicting interannual anomalies beyond the climate change-induced trend. We also test the proposed methodology in a regional context with a use case focused on Europe. While climate change trends dominate the skill of temperature predictions, the method presents additional skill over the climatological forecast in regions influenced by known teleconnections. We reach similar conclusions based on the validation of precipitation predictions. Despite underperforming SEAS5 in most tropics, our model offers added value in numerous extratropical inland regions. This work demonstrates the effectiveness of training generative models on climate model output for seasonal predictions, providing skilful predictions beyond the induced climate change trend at time scales and lead times relevant for user applications.
- Abstract(参考訳): ほとんどの運用型気候サービスプロバイダは、過去の観測に適合する初期化一般循環モデル(英語版)(GCM)または統計技術に基づく季節予測を基礎としている。
GCMは相当量の計算資源を必要とし、容量を制限している。
対照的に、統計学的手法は短い歴史記録のために頑丈さを欠いていることが多い。
近年の研究では、より大規模なサンプルサイズとシミュレーションシナリオを活用した、気候モデル出力に基づく機械学習手法が提案されている。
しかし、これらの研究の多くは、空間的範囲や時間的範囲で制限される可能性のある予測タスクに焦点を当てており、既存の運用予測とのギャップが開けている。
そこで本研究では,変分推論と変分モデルを組み合わせて季節異常の場を予測する手法の有効性を評価する。
予測は4シーズン全てをカバーし、各シーズンの開始の1ヶ月前に初期化される。
このモデルはCMIP6から出力される気候モデルに基づいて訓練され、ERA5の再解析データを用いて試験された。
気候変動に伴う傾向を超えた年次異常予測における手法の性能分析を行った。
また、欧州を中心にしたユースケースを用いて、地域文脈で提案手法を検証した。
気候変動の傾向が気温予測のスキルを支配しているのに対し、この手法は既知の遠隔通信の影響を受けやすい地域での気候予測にさらなるスキルを提供する。
降水予測の妥当性を検証した結果、同様の結論が得られた。
ほとんどの熱帯地域ではSEAS5が劣っているにもかかわらず、我々のモデルは多くの熱帯内陸部で付加価値を提供する。
本研究は、季節予測のための気候モデル出力に対する生成モデルトレーニングの有効性を実証し、時間スケールでの気候変動傾向を超越した厳密な予測と、ユーザアプリケーションに関連するリードタイムを提示する。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Surrogate Ensemble Forecasting for Dynamic Climate Impact Models [0.0]
本研究は, マラリア感染係数R0を予測するリバプールマラリアモデル(LMM)について考察した。
入力および出力データは、ランダムフォレスト量子回帰(RFQR)モデルとベイズ長短期記憶(BLSTM)ニューラルネットワークの形式で代理モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2022-04-12T13:30:01Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Improving seasonal forecast using probabilistic deep learning [1.1988695717766686]
我々は,季節予測能力と予測診断力を高めるための確率論的ディープニューラルネットワークモデルを開発した。
気候シミュレーションで符号化された複雑な物理的関係を活用することで、我々のモデルは好ましい決定論的および確率論的スキルを示す。
季節変動の支配的なモードであるエルニーニョ/南部の振動が、世界の季節予測可能性をどのように調節するかについて、より決定的な答えを与える。
論文 参考訳(メタデータ) (2020-10-27T21:02:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。