論文の概要: Design and Evaluation of Neural Network-Based Receiver Architectures for Reliable Communication
- arxiv url: http://arxiv.org/abs/2503.20500v1
- Date: Wed, 26 Mar 2025 12:39:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:17:58.546972
- Title: Design and Evaluation of Neural Network-Based Receiver Architectures for Reliable Communication
- Title(参考訳): 信頼通信のためのニューラルネットワーク型受信器アーキテクチャの設計と評価
- Authors: Hüseyin Çevik, Erhan Karakoca, İbrahim Hökelek, Ali Görçin,
- Abstract要約: ニューラルネットワークベースの受信機は、ディープラーニングを利用して信号検出と復号を最適化する。
2つの新しいモデル、DAT(Dual Attention Transformer)とRDNLA(Residual Dual Non-Local Attention Network)は、自己注意と残差学習を統合して信号再構成を強化する。
DATとRDNLAは、信号-雑音比(SNR)の異なる従来のニューラルレシーバモデルと他のニューラルレシーバモデルより優れていることがシミュレーションによって示されている。
- 参考スコア(独自算出の注目度): 1.2499537119440243
- License:
- Abstract: Neural network-based receivers leverage deep learning to optimize signal detection and decoding, significantly improving bit-error rate (BER) and block-error rate (BLER) in challenging environments. This study evaluates various architectures and compares their BER and BLER performance across different noise levels. Two novel models, the Dual Attention Transformer (DAT) and the Residual Dual Non-Local Attention Network (RDNLA), integrate self-attention and residual learning to enhance signal reconstruction. These models bypass conventional channel estimation and equalization by directly predicting log-likelihood ratios (LLRs) from received signals, with noise variance as an additional input. Simulations show that DAT and RDNLA outperform traditional and other neural receiver models under varying signal-to-noise ratios (SNR), while their computational efficiency supports their feasibility for next-generation communication systems.
- Abstract(参考訳): ニューラルネットワークベースの受信機は、ディープラーニングを活用して信号検出と復号を最適化し、困難な環境でのビットエラー率(BER)とブロックエラー率(BLER)を大幅に改善する。
本研究では,様々なアーキテクチャを評価し,そのBERとBLERの性能を異なる雑音レベルにわたって比較する。
2つの新しいモデル、DAT(Dual Attention Transformer)とRDNLA(Residual Dual Non-Local Attention Network)は、自己注意と残差学習を統合して信号再構成を強化する。
これらのモデルは、受信信号から対数類似度(LLR)を直接予測し、ノイズ分散を付加入力として、従来のチャネル推定と等化をバイパスする。
DATとRDNLAは信号対雑音比(SNR)の異なる従来のニューラルレシーバモデルよりも優れており、その計算効率は次世代通信システムの実現可能性を支持している。
関連論文リスト
- Neural Network-based Vehicular Channel Estimation Performance: Effect of Noise in the Training Set [0.5530212768657544]
車両通信システムは、高モビリティと急速に変化する環境のために重大な課題に直面している。
これらの課題に対処するために、ニューラルネットワーク(NN)に基づくチャネル推定法が提案されている。
本研究では,混合SNRデータセットに対するNNチャネル推定器の訓練効果について検討した。
論文 参考訳(メタデータ) (2025-02-05T09:29:01Z) - Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
残差ネットワーク(ResNet)を用いて信号の特徴を学習し抽出することで,CFO推定におけるディープラーニングの利用について述べる。
従来のCFO推定法と比較して,提案手法は様々なシナリオにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-08T13:56:22Z) - Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications [12.218161437914118]
無線チャネル上でのデータ伝送と再構成を強化するために,条件付き拡散確率モデル(DDPM)を提案する。
これに触発された鍵となる考え方は、情報信号の「ノイズからクリーン」変換を学ぶ際に、拡散モデルの生成的先行性を活用することである。
提案手法は,情報内容の事前知識が利用可能な通信シナリオに有効である。
論文 参考訳(メタデータ) (2023-10-30T11:33:01Z) - Speech enhancement with frequency domain auto-regressive modeling [34.55703785405481]
遠距離実環境における音声アプリケーションは、残響によって破損した信号を扱うことが多い。
本稿では,音声品質と自動音声認識(ASR)性能を向上させるために,音声認識の統一的枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-24T03:25:51Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFSおよびOFDM波形は、レガシーアーキテクチャの再利用、レシーバ設計の単純さ、低複雑さ検出の利点を享受する。
本稿では,送信機におけるOTFSまたはOFDM信号処理チェーンと受信機とを切り替えて,平均二乗誤差(MSE)性能を最適化するディープニューラルネットワーク(DNN)に基づく適応方式を提案する。
論文 参考訳(メタデータ) (2023-09-04T02:33:44Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - Data-Driven Blind Synchronization and Interference Rejection for Digital
Communication Signals [98.95383921866096]
本研究では,データ駆動型深層学習手法の可能性について検討した。
本研究では,高分解能時間構造(非定常性)の取得が性能向上につながることを示す。
既製のNNと古典的検出と干渉除去の両方で改善可能なドメインインフォームドニューラルネットワーク(NN)の設計を提案する。
論文 参考訳(メタデータ) (2022-09-11T14:10:37Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。