論文の概要: MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
- arxiv url: http://arxiv.org/abs/2503.20502v1
- Date: Wed, 26 Mar 2025 12:42:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:20:20.874032
- Title: MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
- Title(参考訳): MLLMセレクタ:強化ビジュアルインストラクションチューニングのための必要性と多様性駆動型高価値データ選択
- Authors: Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Jiayi Ji, Jie Lou, Debing Zhang, Rongrong Ji,
- Abstract要約: 視覚的インストラクションのチューニングに有用なデータを自動的に識別するMLLM-Selectorを提案する。
モデル性能を向上させるために,VITデータプールの各サンプルの必要なスコアを算出し,サンプルのピボットを同定する。
以上の結果から,データ選択における必要条件と多様性の混合の重要性が指摘され,MLLMセレクタの創出につながった。
- 参考スコア(独自算出の注目度): 69.7347209018861
- License:
- Abstract: Visual instruction tuning (VIT) has emerged as a crucial technique for enabling multi-modal large language models (MLLMs) to follow user instructions adeptly. Yet, a significant gap persists in understanding the attributes of high-quality instruction tuning data and frameworks for its automated selection. To address this, we introduce MLLM-Selector, an automated approach that identifies valuable data for VIT by weighing necessity and diversity. Our process starts by randomly sampling a subset from the VIT data pool to fine-tune a pretrained model, thus creating a seed model with an initial ability to follow instructions. Then, leveraging the seed model, we calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance. Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector, our methodology that fuses necessity scoring with strategic sampling for superior data refinement. Empirical results indicate that within identical experimental conditions, MLLM-Selector surpasses LLaVA-1.5 in some benchmarks with less than 1% of the data and consistently exceeds performance across all validated benchmarks when using less than 50%.
- Abstract(参考訳): ビジュアルインストラクションチューニング(VIT)は,マルチモーダルな大規模言語モデル(MLLM)をユーザ命令に適応させる重要な手法として登場した。
しかし、その自動選択のための高品質なチューニングチューニングデータとフレームワークの属性を理解する上で、大きなギャップが持続する。
MLLMセレクタ(MLLM-Selector)は,必要量や多様性を考慮し,VITにとって価値のあるデータを自動的に識別する手法である。
我々のプロセスは、VITデータプールからサブセットをランダムにサンプリングし、事前訓練されたモデルを微調整することで、命令に従う最初の能力を持つシードモデルを作成することから始まります。
次に,本モデルを用いて,VITデータプールの各サンプルの要点を算出し,モデル性能を向上させるための指標ピボットを同定する。
その結果,データ選択における必要性と多様性の混合の重要性が強調され,MLLM-セレクタの創出につながった。
実験結果から、MLLM-Selectorは、同一実験条件下では、データの1%未満のベンチマークではLLaVA-1.5を超え、50%未満のベンチマークでは、すべての評価ベンチマークで一貫して性能を上回っていることが示唆された。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
視覚言語モデル(VLM)のための新しいデータセット選択手法であるSelf-Filterを導入する。
第1段階では、VLMと共同で学習する訓練指導の難しさを評価するためのスコアリングネットワークを考案する。
第2段階では、トレーニングされたスコアネットを使用して、各命令の難易度を測定し、最も難しいサンプルを選択し、類似したサンプルをペナルティ化し、多様性を促進する。
論文 参考訳(メタデータ) (2024-02-19T20:08:48Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。