UWarp: A Whole Slide Image Registration Pipeline to Characterize Scanner-Induced Local Domain Shift
- URL: http://arxiv.org/abs/2503.20653v1
- Date: Wed, 26 Mar 2025 15:48:38 GMT
- Title: UWarp: A Whole Slide Image Registration Pipeline to Characterize Scanner-Induced Local Domain Shift
- Authors: Antoine Schieb, Bilal Hadjadji, Daniel Tshokola Mweze, Natalia Fernanda Valderrama, Valentin Derangère, Laurent Arnould, Sylvain Ladoire, Alain Lalande, Louis-Oscar Morel, Nathan Vinçon,
- Abstract summary: We present a domain shift analysis framework based on UWarp, a novel registration tool to align histological slides scanned under varying conditions.<n>Experiments demonstrate that UWarp outperforms existing open-source registration methods, achieving a median target registration error (TRE) of less than 4 pixels.<n>We apply UWarp to characterize scanner-induced local domain shift in the predictions of Breast-NEOprAIdict, a deep learning model for breast cancer pathological response prediction.
- Score: 0.9137449870737363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathology slide digitization introduces scanner-induced domain shift that can significantly impact computational pathology models based on deep learning methods. In the state-of-the-art, this shift is often characterized at a broad scale (slide-level or dataset-level) but not patch-level, which limits our comprehension of the impact of localized tissue characteristics on the accuracy of the deep learning models. To address this challenge, we present a domain shift analysis framework based on UWarp, a novel registration tool designed to accurately align histological slides scanned under varying conditions. UWarp employs a hierarchical registration approach, combining global affine transformations with fine-grained local corrections to achieve robust tissue patch alignment. We evaluate UWarp using two private datasets, CypathLung and BosomShieldBreast, containing whole slide images scanned by multiple devices. Our experiments demonstrate that UWarp outperforms existing open-source registration methods, achieving a median target registration error (TRE) of less than 4 pixels (<1 micrometer at 40x magnification) while significantly reducing computational time. Additionally, we apply UWarp to characterize scanner-induced local domain shift in the predictions of Breast-NEOprAIdict, a deep learning model for breast cancer pathological response prediction. We find that prediction variability is strongly correlated with tissue density on a given patch. Our findings highlight the importance of localized domain shift analysis and suggest that UWarp can serve as a valuable tool for improving model robustness and domain adaptation strategies in computational pathology.
Related papers
- From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
We develop a graph-based framework that constructs WSI graph representations.<n>We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches.<n>In our method's final step, we solve the diagnostic task through a graph attention network.
arXiv Detail & Related papers (2025-03-14T20:15:04Z) - Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
arXiv Detail & Related papers (2024-04-18T18:25:00Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Towards Hierarchical Regional Transformer-based Multiple Instance
Learning [2.16656895298847]
We propose a Transformer-based multiple instance learning approach that replaces the traditional learned attention mechanism with a regional, Vision Transformer inspired self-attention mechanism.
We present a method that fuses regional patch information to derive slide-level predictions and show how this regional aggregation can be stacked to hierarchically process features on different distance levels.
Our approach is able to significantly improve performance over the baseline on two histopathology datasets and points towards promising directions for further research.
arXiv Detail & Related papers (2023-08-24T08:19:15Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
This work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation.
In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift.
Experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance.
arXiv Detail & Related papers (2023-06-06T08:56:58Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - REET: Robustness Evaluation and Enhancement Toolbox for Computational
Pathology [1.452875650827562]
We propose the first domain-specific Robustness Evaluation and Enhancement Toolbox (REET) for computational pathology applications.
REET provides a suite of algorithmic strategies for enabling robustness assessment of predictive models.
REET also enables efficient and robust training of deep learning pipelines in computational pathology.
arXiv Detail & Related papers (2022-01-28T18:23:55Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.