論文の概要: Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
- arxiv url: http://arxiv.org/abs/2503.20658v1
- Date: Wed, 26 Mar 2025 15:54:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:18.896201
- Title: Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
- Title(参考訳): 統合地球・非地球ネットワークにおけるネットワーク資源分析の確率予測
- Authors: Cristian J. Vaca-Rubio, Vaishnavi Kasuluru, Engin Zeydan, Luis Blanco, Roberto Pereira, Marius Caus, Kapal Dev,
- Abstract要約: 予測の不確かさを定量化する確率予測は、単一点予測手法の頑健な代替手段である。
その結果、黒確率予測モデルが正確で信頼性の高い予測を提供し、その不確実性を定量化する可能性が示された。
論文の最後には,TN-NTN統合環境における確率予測の応用シナリオと標準化ロードマップも提示する。
- 参考スコア(独自算出の注目度): 9.85420209931986
- License:
- Abstract: Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.
- Abstract(参考訳): 非地球ネットワーク(NTN)にとって、効率的な資源管理は、遠隔地および下層地域において一貫した高品質なサービスを提供するために重要である。
LSTM(Long-Short Term Memory)のような従来の単一点予測法は地上ネットワークで使われてきたが、衛星力学、信号遅延、カバー変数の複雑さのためにNTNでは不足することが多い。
確率予測(probabilistic forecasting)は、予測の不確実性を定量化するものであり、堅牢な代替手段である。
本稿では,NTN資源割り当てシナリオに対する確率的予測手法,特にSFFの適用性を評価する。
その結果,LSTMのような単一点予測手法と比較して,異なるNTNセグメントの確率予測における帯域幅とキャパシティ要求の予測の有効性が示された。
その結果,ブラック確率予測モデルが正確で信頼性の高い予測を行い,その不確実性を定量化する可能性を示し,NTN資源割り当ての最適化に欠かせない結果となった。
論文の最後には,TN-NTN統合環境における確率予測の応用シナリオと標準化ロードマップも提示する。
関連論文リスト
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
持続可能なOpen Radio Access Network(O-RAN)アーキテクチャへの移行は、リソース管理に新たな課題をもたらす。
本稿では,確率的予測手法を用いて物理資源ブロック(PRB)負荷を特徴付ける新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:25:20Z) - Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN [3.190069716363552]
本稿では,Open Radio Access Network (O-RAN) のクラウドネイティブな側面と,Radio App (rApp) デプロイメントオプションについて検討する。
本稿では,Deep Autoregressive Recurrent Network (DeepAR) の他の決定論的確率推定器に対する利点を示す。
論文 参考訳(メタデータ) (2024-07-19T15:04:15Z) - On the use of Probabilistic Forecasting for Network Analysis in Open RAN [2.7599595576304963]
確率予測技術は、様々な可能な結果と関連する確率を提供する。
本稿では,Open RANアーキテクチャ内の無線アプリケーション (rApp) として確率予測手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:03:38Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Regions of Reliability in the Evaluation of Multivariate Probabilistic
Forecasts [73.33395097728128]
時系列予測評価のための適切なスコアリングルールに関する最初の体系的な有限サンプル研究を提供する。
本研究では, 地中構造と予測分布のいくつかの重要な相違点をテストするために, 総合的な総合的合成ベンチマークを用いて解析を行った。
論文 参考訳(メタデータ) (2023-04-19T17:38:42Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
我々は、条件付き可逆ニューラルネットワーク(cINN)を用いて、データの基盤となる分布を学習し、この分布からの不確実性を任意の決定論的予測と組み合わせる。
我々のアプローチは、複雑な統計的損失関数やさらなる仮定を伴わずに、確率的予測を簡単に作成できる。
論文 参考訳(メタデータ) (2023-02-03T15:11:39Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
気候予測に対する補完的な機械学習に基づくアプローチを追求する。
特に,Densenetアーキテクチャのフィードフォワード畳み込みネットワークは,予測能力において,畳み込みLSTMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-23T00:28:36Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。