論文の概要: Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN
- arxiv url: http://arxiv.org/abs/2407.14377v1
- Date: Fri, 19 Jul 2024 15:04:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:05:24.167816
- Title: Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN
- Title(参考訳): O-RANにおける確率的予測手法によるクラウドネイティブリソース割り当ての強化
- Authors: Vaishnavi Kasuluru, Luis Blanco, Engin Zeydan, Albert Bel, Angelos Antonopoulos,
- Abstract要約: 本稿では,Open Radio Access Network (O-RAN) のクラウドネイティブな側面と,Radio App (rApp) デプロイメントオプションについて検討する。
本稿では,Deep Autoregressive Recurrent Network (DeepAR) の他の決定論的確率推定器に対する利点を示す。
- 参考スコア(独自算出の注目度): 3.190069716363552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for intelligent and efficient resource provisioning for the productive management of resources in real-world scenarios is growing with the evolution of telecommunications towards the 6G era. Technologies such as Open Radio Access Network (O-RAN) can help to build interoperable solutions for the management of complex systems. Probabilistic forecasting, in contrast to deterministic single-point estimators, can offer a different approach to resource allocation by quantifying the uncertainty of the generated predictions. This paper examines the cloud-native aspects of O-RAN together with the radio App (rApp) deployment options. The integration of probabilistic forecasting techniques as a rApp in O-RAN is also emphasized, along with case studies of real-world applications. Through a comparative analysis of forecasting models using the error metric, we show the advantages of Deep Autoregressive Recurrent network (DeepAR) over other deterministic probabilistic estimators. Furthermore, the simplicity of Simple-Feed-Forward (SFF) leads to a fast runtime but does not capture the temporal dependencies of the input data. Finally, we present some aspects related to the practical applicability of cloud-native O-RAN with probabilistic forecasting.
- Abstract(参考訳): 現実シナリオにおける資源生産管理のための知的かつ効率的な資源供給の必要性は,6G時代に向けての電気通信の進化とともに増大している。
Open Radio Access Network (O-RAN) のような技術は、複雑なシステムを管理するための相互運用可能なソリューションを構築するのに役立つ。
確率的予測は、決定論的単一点推定器とは対照的に、生成した予測の不確かさを定量化することによって、リソース割り当てに対して異なるアプローチを提供することができる。
本稿では,O-RANのクラウドネイティブな側面と,無線アプリ(rApp)デプロイメントオプションについて検討する。
O-RANにおけるrAppとしての確率予測技術の統合も、実世界の応用のケーススタディとともに強調されている。
誤差メトリックを用いた予測モデルの比較分析により,他の決定論的確率推定器と比較して,Deep Autoregressive Recurrent Network(DeepAR)の利点を示す。
さらに、Simple-Feed-Forward(SFF)の単純さは、高速なランタイムにつながるが、入力データの時間的依存関係をキャプチャしない。
最後に、確率的予測を伴うクラウドネイティブなO-RANの実用性に関するいくつかの側面を示す。
関連論文リスト
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
持続可能なOpen Radio Access Network(O-RAN)アーキテクチャへの移行は、リソース管理に新たな課題をもたらす。
本稿では,確率的予測手法を用いて物理資源ブロック(PRB)負荷を特徴付ける新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:25:20Z) - On the use of Probabilistic Forecasting for Network Analysis in Open RAN [2.7599595576304963]
確率予測技術は、様々な可能な結果と関連する確率を提供する。
本稿では,Open RANアーキテクチャ内の無線アプリケーション (rApp) として確率予測手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:03:38Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Practical Probabilistic Model-based Deep Reinforcement Learning by
Integrating Dropout Uncertainty and Trajectory Sampling [7.179313063022576]
本稿では,ニューラルネットワーク上に構築された現在の確率モデルベース強化学習(MBRL)の予測安定性,予測精度,制御能力について述べる。
トラジェクトリサンプリング(DPETS)を用いた新しいアプローチであるドロップアウト型確率アンサンブルを提案する。
論文 参考訳(メタデータ) (2023-09-20T06:39:19Z) - Probabilistic Time Series Forecasting for Adaptive Monitoring in Edge
Computing Environments [0.06999740786886537]
本稿では,重要なインフラをモニタリングするためのサンプリングベースおよびクラウドロケーションアプローチを提案する。
公開されているストリーミングデータセット上で,モニタリングパイプラインのプロトタイプ実装を評価した。
論文 参考訳(メタデータ) (2022-11-24T17:35:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
GAN(Generative Adversarial Network)をベースとしたデータ駆動型分散ロバストな制約付きプログラミングフレームワークを提案する。
非パラメトリックかつ教師なしの方法で、歴史的データから分布情報を完全抽出するために、GANを適用する。
提案手法は需要不確実性の下でサプライチェーン最適化に適用される。
論文 参考訳(メタデータ) (2020-02-28T00:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。