論文の概要: On the use of Probabilistic Forecasting for Network Analysis in Open RAN
- arxiv url: http://arxiv.org/abs/2407.14375v1
- Date: Fri, 19 Jul 2024 15:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:05:24.170868
- Title: On the use of Probabilistic Forecasting for Network Analysis in Open RAN
- Title(参考訳): Open RANにおけるネットワーク解析における確率予測の利用について
- Authors: Vaishnavi Kasuluru, Luis Blanco, Engin Zeydan,
- Abstract要約: 確率予測技術は、様々な可能な結果と関連する確率を提供する。
本稿では,Open RANアーキテクチャ内の無線アプリケーション (rApp) として確率予測手法を提案する。
- 参考スコア(独自算出の注目度): 2.7599595576304963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike other single-point Artificial Intelligence (AI)-based prediction techniques, such as Long-Short Term Memory (LSTM), probabilistic forecasting techniques (e.g., DeepAR and Transformer) provide a range of possible outcomes and associated probabilities that enable decision makers to make more informed and robust decisions. At the same time, the architecture of Open RAN has emerged as a revolutionary approach for mobile networks, aiming at openness, interoperability and innovation in the ecosystem of RAN. In this paper, we propose the use of probabilistic forecasting techniques as a radio App (rApp) within the Open RAN architecture. We investigate and compare different probabilistic and single-point forecasting methods and algorithms to estimate the utilization and resource demands of Physical Resource Blocks (PRBs) of cellular base stations. Through our evaluations, we demonstrate the numerical advantages of probabilistic forecasting techniques over traditional single-point forecasting methods and show that they are capable of providing more accurate and reliable estimates. In particular, DeepAR clearly outperforms single-point forecasting techniques such as LSTM and Seasonal-Naive (SN) baselines and other probabilistic forecasting techniques such as Simple-Feed-Forward (SFF) and Transformer neural networks.
- Abstract(参考訳): LSTM(Long-Short Term Memory)のような、他のシングルポイント人工知能(AI)ベースの予測技術とは異なり、確率予測技術(DeepARやTransformerなど)は、意思決定者がより情報的かつ堅牢な決定を下せる可能性のある、さまざまな結果と関連する確率を提供する。
同時に、Open RANのアーキテクチャはモバイルネットワークの革命的なアプローチとして現れ、RANのエコシステムにおけるオープン性、相互運用性、イノベーションを目指している。
本稿では,Open RANアーキテクチャ内の無線アプリケーション (rApp) として確率予測手法を提案する。
携帯電話基地局の物理資源ブロック(PRB)の利用と資源需要を推定するために,様々な確率的・単一点予測手法とアルゴリズムについて検討・比較を行った。
評価を通じて,従来の単一点予測手法よりも確率的予測手法の数値的優位性を実証し,より正確で信頼性の高い推定を行うことができることを示す。
特に、DeepARはLSTMやFeedal-Naive(SN)ベースラインなどの単一ポイント予測技術や、Simple-Feed-Forward(SFF)やTransformer Neural Networkといった確率予測技術よりも明らかに優れています。
関連論文リスト
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
持続可能なOpen Radio Access Network(O-RAN)アーキテクチャへの移行は、リソース管理に新たな課題をもたらす。
本稿では,確率的予測手法を用いて物理資源ブロック(PRB)負荷を特徴付ける新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:25:20Z) - Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN [3.190069716363552]
本稿では,Open Radio Access Network (O-RAN) のクラウドネイティブな側面と,Radio App (rApp) デプロイメントオプションについて検討する。
本稿では,Deep Autoregressive Recurrent Network (DeepAR) の他の決定論的確率推定器に対する利点を示す。
論文 参考訳(メタデータ) (2024-07-19T15:04:15Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI [41.99446024585741]
Weak Innovation AutoEncoderをベースとしたGenerative Probabilistic ForecastingアーキテクチャであるWIAE-GPFを提案する。
構造収束を保証する新しい学習アルゴリズムを提案し、生成した予測サンプルが基底真理条件付き確率分布と一致することを保証した。
論文 参考訳(メタデータ) (2024-03-09T00:41:30Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
気候予測に対する補完的な機械学習に基づくアプローチを追求する。
特に,Densenetアーキテクチャのフィードフォワード畳み込みネットワークは,予測能力において,畳み込みLSTMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-23T00:28:36Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
本稿では,スマートグリッド(SG)システムの最先端予測手法について概説する。
統計学,機械学習(ML),深層学習(DL)などの従来の点予測手法について検討した。
ヴィクトリア朝の電力消費とアメリカの電力(AEP)の比較ケーススタディを行った。
論文 参考訳(メタデータ) (2020-11-25T09:17:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。