Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
- URL: http://arxiv.org/abs/2503.20750v1
- Date: Wed, 26 Mar 2025 17:33:38 GMT
- Title: Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
- Authors: Soham Sane,
- Abstract summary: This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts architecture.<n>Our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts.<n>We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts (MoE) architecture that aims to enhance computational efficiency while preserving model scalability. Unlike conventional MoE models, which route entire token embeddings to selected experts, our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts. To combat losses in token representation, we utilize a pre-expert transformer layer to recompute attention across tokens and reduce the sequence length dimensionality. We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead. These formulations yield closed-form and numerically-solvable expressions for identifying the optimal expert count under given architectural and hardware constraints. As a result, our framework not only provides theoretical bounds for computing efficiency with varying frameworks but also guides practical design choices for scaling large models effectively. While empirical validation is pending, we present a comprehensive experimental road map to evaluate the framework's efficiency, scalability, and practicality in future work.
Related papers
- Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models [10.623996218106564]
We introduce a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space.
All expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations.
This factorized approach substantially diminishes parameter count and computational requirements.
arXiv Detail & Related papers (2025-03-29T14:35:34Z) - ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses [0.0]
ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG)
We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts.
We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization.
arXiv Detail & Related papers (2025-03-23T17:26:23Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient [4.34286535607654]
We present joint scaling laws for dense and MoE models, incorporating key factors such as the number of active parameters, dataset size, and the number of experts.<n>Surprisingly, we show that MoE models can be more memory-efficient than dense models, contradicting conventional wisdom.
arXiv Detail & Related papers (2025-02-07T18:55:38Z) - Searching for Efficient Linear Layers over a Continuous Space of Structured Matrices [88.33936714942996]
We present a unifying framework that enables searching among all linear operators expressible via an Einstein summation.
We show that differences in the compute-optimal scaling laws are mostly governed by a small number of variables.
We find that Mixture-of-Experts (MoE) learns an MoE in every single linear layer of the model, including the projection in the attention blocks.
arXiv Detail & Related papers (2024-10-03T00:44:50Z) - Mixture of A Million Experts [1.240096657086732]
This paper introduces PEER, a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of experts.
Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off.
arXiv Detail & Related papers (2024-07-04T20:59:20Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Scaling Laws for Fine-Grained Mixture of Experts [4.412803924115907]
Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models.
In this work, we analyze their scaling properties, incorporating an expanded range of variables.
We establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity.
arXiv Detail & Related papers (2024-02-12T18:33:47Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision [54.16430358203348]
We propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference.
We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance.
arXiv Detail & Related papers (2022-07-13T14:41:05Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.