ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses
- URL: http://arxiv.org/abs/2504.08744v1
- Date: Sun, 23 Mar 2025 17:26:23 GMT
- Title: ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses
- Authors: Esmail Gumaan,
- Abstract summary: ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG)<n>We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts.<n>We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG) to advance the efficiency and accuracy of knowledge-intensive language modeling. We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts based on the query's needs. The paper lays out the theoretical foundations of ExpertRAG, including a probabilistic formulation that treats retrieval and expert selection as latent decisions, and mathematical justifications for its efficiency in both computation and knowledge utilization. We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization. A comparative analysis positions ExpertRAG against standard RAG (with always-on retrieval) and pure MoE models (e.g., Switch Transformer, Mixtral) to highlight its unique balance between parametric knowledge and non-parametric retrieval. We also outline an experimental validation strategy, proposing benchmarks and evaluation protocols to test ExpertRAG's performance on factual recall, generalization, and inference efficiency. The proposed framework, although presented theoretically, is supported by insights from prior work in RAG and MoE, and is poised to provide more factual, efficient, and adaptive generation by leveraging the best of both paradigms. In summary, ExpertRAG contributes a new perspective on scaling and augmenting language models, backed by a thorough analysis and a roadmap for empirical validation.
Related papers
- Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
We establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning.<n>We show that the widely used beam search method suffers from unacceptable over-optimism.<n>We propose Supervised Optimism Correction, which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations.
arXiv Detail & Related papers (2025-04-10T07:50:03Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.<n>Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.<n>We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
arXiv Detail & Related papers (2025-03-05T06:11:24Z) - Latenrgy: Model Agnostic Latency and Energy Consumption Prediction for Binary Classifiers [0.0]
Machine learning systems increasingly drive innovation across scientific fields and industry.<n>Yet challenges in compute overhead, specifically during inference, limit their scalability and sustainability.<n>This study addresses critical gaps in the literature, chiefly the lack of generalized predictive techniques for latency and energy consumption.
arXiv Detail & Related papers (2024-12-26T14:51:24Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
The Extract-Refine-Retrieve-Read (ERRR) framework is designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems.
Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting knowledge from Large Language Models (LLMs)
arXiv Detail & Related papers (2024-11-12T14:12:45Z) - Optimal Query Allocation in Extractive QA with LLMs: A Learning-to-Defer Framework with Theoretical Guarantees [3.4289478404209826]
Large Language Models excel in generative tasks but exhibit inefficiencies in structured text selection.<n>We propose a Learning-to-Defer framework that allocates queries to specialized experts, ensuring high-confidence predictions.
arXiv Detail & Related papers (2024-10-21T08:21:00Z) - Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs)
Existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence.
We introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs.
arXiv Detail & Related papers (2024-10-02T17:37:18Z) - Retrieval-Oriented Knowledge for Click-Through Rate Prediction [29.55757862617378]
Click-through rate (CTR) prediction is crucial for personalized online services.
underlineretrieval-underlineoriented underlineknowledge (bfname) framework bypasses the real retrieval process.
name features a knowledge base that preserves and imitates the retrieved & aggregated representations.
arXiv Detail & Related papers (2024-04-28T20:21:03Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Multi-view Inference for Relation Extraction with Uncertain Knowledge [8.064148591925932]
This paper proposes to exploit uncertain knowledge to improve relation extraction.
We introduce ProBase, an uncertain KG that indicates to what extent a target entity belongs to a concept.
We then design a novel multi-view inference framework to systematically integrate local context and global knowledge.
arXiv Detail & Related papers (2021-04-28T05:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.