Boundary Time Crystals Induced by Local Dissipation and Long-Range Interactions
- URL: http://arxiv.org/abs/2503.20761v2
- Date: Tue, 15 Apr 2025 16:35:45 GMT
- Title: Boundary Time Crystals Induced by Local Dissipation and Long-Range Interactions
- Authors: Zhuqing Wang, Ruochen Gao, Xiaoling Wu, Berislav Buča, Klaus Mølmer, Li You, Fan Yang,
- Abstract summary: Driven-dissipative many-body system supports nontrivial quantum phases absent in equilibrium.<n>This so-called boundary time crystal (BTC) is fragile in the presence of local dissipation.<n>We demonstrate a robust BTC that is intrinsically induced by local dissipation.
- Score: 7.677393990763026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven-dissipative many-body system supports nontrivial quantum phases absent in equilibrium. As a prominent example, the interplay between coherent driving and collective dissipation can lead to a dynamical quantum phase that spontaneously breaks time-translation symmetry. This so-called boundary time crystal (BTC) is fragile in the presence of local dissipation, which can easily relax the system to a stationary state. In this work, we demonstrate a robust BTC that is intrinsically induced by local dissipation. We provide extensive numerical evidences to support existence of the BTC and study its behaviors in different regimes. In particular, with decreasing interaction range, we identify a transition from classical limit cycles to quantum BTCs featuring sizable spatial correlations. Our studies significantly broaden the scope of nonequilibrium phases and shed new light on experimental search for dynamical quantum matter.
Related papers
- Impact of quantum noise on phase transitions in an atom-cavity system with limit cycles [0.0]
We show that quantum noise pushes the system to exhibit signatures of LCs for interaction strengths lower than the critical value predicted by the standard mean-field theory.<n>Our work demonstrates that the apparent crossover-like behavior between stationary phases brought by finite-size effects from quantum fluctuations also apply to transitions involving dynamical phases.
arXiv Detail & Related papers (2024-07-31T07:30:56Z) - Self-Organized Time Crystal in Driven-Dissipative Quantum System [0.0]
Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time translation symmetry.
We propose a new kind of CTC realized in a quantum contact model through self-organized bistability.
Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
arXiv Detail & Related papers (2023-11-15T12:10:32Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Realizing discrete time crystal in an one-dimensional superconducting
qubit chain [11.115884267868482]
Floquet systems can support a discrete time-translation symmetry (TTS) broken phase, dubbed the discrete time crystal (DTC)
Here we report the observation of the DTC in an one-dimensional superconducting qubit chain.
arXiv Detail & Related papers (2021-08-02T14:44:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.