Self-Organized Time Crystal in Driven-Dissipative Quantum System
- URL: http://arxiv.org/abs/2311.08899v2
- Date: Tue, 30 Apr 2024 13:36:50 GMT
- Title: Self-Organized Time Crystal in Driven-Dissipative Quantum System
- Authors: Ya-Xin Xiang, Qun-Li Lei, Zhengyang Bai, Yu-Qiang Ma,
- Abstract summary: Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time translation symmetry.
We propose a new kind of CTC realized in a quantum contact model through self-organized bistability.
Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time translation symmetry. Since the ruling out of equilibrium CTCs by no-go theorems, the emergence of such dynamical phases has been observed in various driven-dissipative quantum platforms. The current understanding of CTCs is mainly based on mean-field (MF) theories, which fail to address the problem of whether the long-range time crystalline order exists in noisy, spatially extended systems without the protection of all-to-all couplings. Here, we propose a new kind of CTC realized in a quantum contact model through self-organized bistability (SOB). The exotic CTCs stem from the interplay between collective dissipation induced by the first-order absorbing phase transitions (APTs) and slow constant driving provided by an incoherent pump. The stability of such oscillatory phases in finite dimensions under the action of intrinsic quantum fluctuations is scrutinized by the functional renormalization group method and numerical simulations. Occurring at the edge of quantum synchronization, the CTC phase exhibits an inherent period and amplitude with a coherence time diverging with system size, thus also constituting a boundary time crystal (BTC). Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Chaos in Time: A Dissipative Continuous Quasi Time Crystals [0.0]
We introduce a Continuous Quasi Time Crystals (CQTC)
Despite being characterized by the presence of non-decaying oscillations, this phase does not retain its long-range order.
We investigate the connection between chaos and this quasi-crystalline phase using mean-field techniques.
arXiv Detail & Related papers (2024-11-11T19:00:06Z) - Non-Hermitian Discrete Time Crystals [0.0]
We devise a mechanism for establishing a stable DTC with period-doubling oscillations in an open quantum system.
We find a specific class of non-reciprocal couplings in our non-Hermitian dynamics which prevents thermalization through eigenstate ordering.
arXiv Detail & Related papers (2024-10-30T05:39:18Z) - Observation of a phase transition from a continuous to a discrete time crystal [0.0]
discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states.
We show a phase transition from a continuous time crystal to a discrete time crystal.
arXiv Detail & Related papers (2024-02-19T18:59:50Z) - Bridging closed and dissipative discrete time crystals in spin systems
with infinite-range interactions [0.0]
We elucidate the role that the dissipation in a bosonic channel plays in the prevalence and stability of time crystals (TCs) in a periodically driven spin-boson system.
For strong dissipation, we study the dynamics using an effective atom-only description and the closed Lipkin-Meshkov-Glick model.
We find TCs in both closed-system and dissipative regimes, but dissipative TCs are shown to be more robust against random noise in the drive.
arXiv Detail & Related papers (2023-03-23T15:15:26Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Realizing discrete time crystal in an one-dimensional superconducting
qubit chain [11.115884267868482]
Floquet systems can support a discrete time-translation symmetry (TTS) broken phase, dubbed the discrete time crystal (DTC)
Here we report the observation of the DTC in an one-dimensional superconducting qubit chain.
arXiv Detail & Related papers (2021-08-02T14:44:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.