Realizing discrete time crystal in an one-dimensional superconducting
qubit chain
- URL: http://arxiv.org/abs/2108.00942v1
- Date: Mon, 2 Aug 2021 14:44:30 GMT
- Title: Realizing discrete time crystal in an one-dimensional superconducting
qubit chain
- Authors: Huikai Xu, Jingning Zhang, Jiaxiu Han, Zhiyuan Li, Guangming Xue,
Weiyang Liu, Yirong Jin, Haifeng Yu
- Abstract summary: Floquet systems can support a discrete time-translation symmetry (TTS) broken phase, dubbed the discrete time crystal (DTC)
Here we report the observation of the DTC in an one-dimensional superconducting qubit chain.
- Score: 11.115884267868482
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Floquet engineering, i.e. driving the system with periodic Hamiltonians, not
only provides great flexibility in analog quantum simulation, but also supports
phase structures of great richness. It has been proposed that Floquet systems
can support a discrete time-translation symmetry (TTS) broken phase, dubbed the
discrete time crystal (DTC). This proposal, as well as the exotic phase, has
attracted tremendous interest among the community of quantum simulation. Here
we report the observation of the DTC in an one-dimensional superconducting
qubit chain. We experimentally realize long-time stroboscopic quantum dynamics
of a periodically driven spin system consisting of 8 transmon qubits, and
obtain a lifetime of the DTC order limited by the coherence time of the
underlying physical platform. We also explore the crossover between the
discrete TTS broken and unbroken phases via various physical signatures. Our
work extends the usage of superconducting circuit systems in quantum simulation
of many-body physics, and provides an experimental tool for investigating
non-equilibrium dynamics and phase structures.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer [0.20971479389679332]
We study the relaxation dynamics of initially prepared product states under periodic driving in a kicked Ising model.
We identify the presence of a prethermal regime characterised by magnetisation measurements at twice the period of the Floquet cycle.
Our results provide evidence supporting the realisation of a period-doubling DTC in a two-dimensional system.
arXiv Detail & Related papers (2024-03-25T12:56:13Z) - Self-Organized Time Crystal in Driven-Dissipative Quantum System [0.0]
Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time translation symmetry.
We propose a new kind of CTC realized in a quantum contact model through self-organized bistability.
Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
arXiv Detail & Related papers (2023-11-15T12:10:32Z) - A Robust Large-Period Discrete Time Crystal and its Signature in a Digital Quantum Computer [7.078842654618816]
Discrete time crystals (DTCs) are novel out-of-equilibrium quantum states of matter which break time translational symmetry.
We develop an intuitive interacting spin-$1/2$ system that supports the more non-trivial period-quadrupling DTCs.
We find a strong signature of the predicted $4T$-DTC that is robust against and, in some cases, amplified by different types of disorders.
arXiv Detail & Related papers (2023-09-20T18:01:01Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Realizable time crystal of four silicon quantum dot qubits [0.0]
We discuss possible realizations of quantum Floquet matter in modern silicon spin qubits based in quantum dots.
This is significant given that spin qubits have fallen behind other qubit architectures in terms of size and control.
We demonstrate that even for a spin chain of four qubits, rich regime structures can be established by observing signatures of the discrete time crystal.
arXiv Detail & Related papers (2022-09-27T19:24:57Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum repetition codes as building blocks of large period discrete
time crystals [0.0]
Discrete time crystals (DTCs) are nonequilibrium phases of matter with exotic observable dynamics.
Current successful experiments are however only limited to realizing DTCs with period-doubling and period-tripling observable dynamics.
We propose a scheme for building DTCs exhibiting any large period observable dynamics, which is observable even at sufficiently small system sizes.
arXiv Detail & Related papers (2021-02-18T01:49:17Z) - Quantum emulation of coherent backscattering in a system of
superconducting qubits [45.82374977939355]
We use multi-pass Landau-Zener transitions at the avoided crossing of a highly-coherent superconducting qubit to emulate weak localization (WL) and universal conductance fluctuations (UCF)
The higher coherence of this qubit enabled the realization of both effects, in contrast to earlier work arXiv:1204.6428, which successfully emulated UCF, but did not observe WL.
arXiv Detail & Related papers (2019-12-28T17:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.